메뉴 건너뛰기




Volumn 40, Issue 10, 2013, Pages 2398-2417

An adaptive penalty based covariance matrix adaptation-evolution strategy

Author keywords

Adaptive penalty; Constrained optimization; Covariance matrix adaptation; Evolution strategies

Indexed keywords

ADAPTIVE PENALTY; CONSTRAINT OPTIMIZATION PROBLEMS; CONVENTIONAL METHODS; COVARIANCE MATRIX ADAPTATION; EQUALITY CONSTRAINTS; EVOLUTION STRATEGIES; SPEED OF CONVERGENCE; UNCONSTRAINED OPTIMIZATION PROBLEMS;

EID: 84878130983     PISSN: 03050548     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cor.2013.03.013     Document Type: Article
Times cited : (20)

References (57)
  • 2
    • 24944543138 scopus 로고    scopus 로고
    • An evolutionary programming algorithm for continuous global optimization
    • DOI 10.1016/j.ejor.2004.05.007, PII S0377221704003479
    • Y.W. Yang, J.F. Xu, and C.K. Soh An evolutionary programming algorithm for continuous global optimization European Journal of Operational Research 168 2 2006 354 369 (Pubitemid 41329852)
    • (2006) European Journal of Operational Research , vol.168 , Issue.2 SPEC. ISS. , pp. 354-369
    • Yang, Y.W.1    Xu, J.F.2    Soh, C.K.3
  • 3
    • 79960152289 scopus 로고    scopus 로고
    • Inequality constraint handling in genetic algorithms using a boundary simulation method
    • X. Li, and G. Du Inequality constraint handling in genetic algorithms using a boundary simulation method Computers and Operations Research 39 3 2012 521 540
    • (2012) Computers and Operations Research , vol.39 , Issue.3 , pp. 521-540
    • Li, X.1    Du, G.2
  • 4
    • 0033676183 scopus 로고    scopus 로고
    • The need for improving the exploration operators for constrained optimization problems
    • La Jolla, CA, USA 2000
    • S.B. Hamida, and A. Petrowski The need for improving the exploration operators for constrained optimization problems IEEE Evolutionary Computation 2000 1176 1183 La Jolla, CA, USA 2000
    • (2000) IEEE Evolutionary Computation , pp. 1176-1183
    • Hamida, S.B.1    Petrowski, A.2
  • 5
    • 25444524580 scopus 로고    scopus 로고
    • Evolutionary algorithms for constrained parameter optimization problems
    • Z. Michalewicz, and M. Schoenauer Evolutionary algorithms for constrained parameter optimization problems Evolutionary Computation 4 1996 1 32 (Pubitemid 126707158)
    • (1996) Evolutionary Computation , vol.4 , Issue.1 , pp. 1-32
    • Michalewicz, Z.1
  • 6
    • 81955165132 scopus 로고    scopus 로고
    • Constraint-handling in nature-inspired numerical optimization: Past, present and future
    • E. Mezura-Montes, and CA. Coello Coello Constraint-handling in nature-inspired numerical optimization: past, present and future Swarm and Evolutionary Computation 1 4 2011 173 194
    • (2011) Swarm and Evolutionary Computation , vol.1 , Issue.4 , pp. 173-194
    • Mezura-Montes, E.1    Coello Coello, C.A.2
  • 7
    • 0442289111 scopus 로고    scopus 로고
    • Constraint-handling in genetic algorithms through the use of dominance-based tournament selection
    • C.A. Coello Coello, and E. Mezura Montes Constraint-handling in genetic algorithms through the use of dominance-based tournament selection Advanced Engineering Informatics 16 3 2002 193 203
    • (2002) Advanced Engineering Informatics , vol.16 , Issue.3 , pp. 193-203
    • Coello Coello, C.A.1    Mezura Montes, E.2
  • 9
    • 34247509250 scopus 로고    scopus 로고
    • Evolutionary constrained optimization using an addition of ranking method and a percentage-based tolerance value adjustment scheme
    • DOI 10.1016/j.ins.2007.01.011, PII S0020025507000400
    • P.Y. Ho, and K. Shimizu Evolutionary constrained optimization using an addition of ranking method and a percentage-based tolerance value adjustment scheme Information Sciences 177 14 2007 2985 3004 (Pubitemid 46660006)
    • (2007) Information Sciences , vol.177 , Issue.14 , pp. 2985-3004
    • Ho, P.Y.1    Shimizu, K.2
  • 10
    • 0034266683 scopus 로고    scopus 로고
    • Stochastic ranking for constrained evolutionary optimization
    • T.P. Runarsson, and X. Yao Stochastic ranking for constrained evolutionary optimization Evolutionary Computation: IEEE 2000 284 294
    • (2000) Evolutionary Computation: IEEE , pp. 284-294
    • Runarsson, T.P.1    Yao, X.2
  • 11
    • 0035377566 scopus 로고    scopus 로고
    • Completely derandomized self-adaptation in evolution strategies
    • N. Hansen, and A. Ostermeier Completely derandomized self-adaptation in evolution strategies Evolutionary Computation 9 2 2001 159 195
    • (2001) Evolutionary Computation , vol.9 , Issue.2 , pp. 159-195
    • Hansen, N.1    Ostermeier, A.2
  • 13
    • 84879034313 scopus 로고    scopus 로고
    • Constrained optimization with evolutionary algorithms:A comprehensive review
    • A.O. Kusakci, and M. Can Constrained optimization with evolutionary algorithms:a comprehensive review South East Europe Journal of Soft Computing 1 2 2012 16 24
    • (2012) South East Europe Journal of Soft Computing , vol.1 , Issue.2 , pp. 16-24
    • Kusakci, A.O.1    Can, M.2
  • 15
    • 0037016631 scopus 로고    scopus 로고
    • Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art
    • DOI 10.1016/S0045-7825(01)00323-1, PII S0045782501003231
    • C.A. Coello Coello Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art Computer Methods in Applied Mechanics and Engineering 191 11-12 2002 1245 1287 (Pubitemid 34099386)
    • (2002) Computer Methods in Applied Mechanics and Engineering , vol.191 , Issue.11-12 , pp. 1245-1287
    • Coello Coello, C.A.1
  • 16
    • 0033094194 scopus 로고    scopus 로고
    • Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization
    • S. Koziel, and Z. Michalewicz Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization Evolutionary Computation 7 1 1999 19 44
    • (1999) Evolutionary Computation , vol.7 , Issue.1 , pp. 19-44
    • Koziel, S.1    Michalewicz, Z.2
  • 18
    • 0028413196 scopus 로고
    • Constrained optimization via genetic algorithms
    • A. Homaifar, C.X. Qi, and S.H. Lai Constrained optimization via genetic algorithms Simulation 62 4 1994 242 253
    • (1994) Simulation , vol.62 , Issue.4 , pp. 242-253
    • Homaifar, A.1    Qi, C.X.2    Lai, S.H.3
  • 19
    • 0028602950 scopus 로고
    • On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's
    • Orlando, FL: IEEE
    • Joines J, Houck C. On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's. 1st IEEE conference on evolutionary computation. Orlando, FL: IEEE; 1994. p. 579-84.
    • (1994) 1st IEEE Conference on Evolutionary Computation , pp. 579-584
    • Joines, J.1    Houck, C.2
  • 20
    • 0030688633 scopus 로고    scopus 로고
    • A genetic algorithm for the multiple-choice integer program
    • A.B. Hadj-Alouane, and J.C.A. Bean Genetic algorithm for the multiple-choice integer program Operations Research 45 1 1997 92 101 (Pubitemid 127684689)
    • (1997) Operations Research , vol.45 , Issue.1 , pp. 92-101
    • Hadj-Alouane, A.B.1    Bean, J.C.2
  • 22
    • 0033729054 scopus 로고    scopus 로고
    • An efficient constraint handling method for genetic algorithms
    • K. Deb An efficient constraint handling method for genetic algorithms Computer Methods in Applied Mechanics and Engineering 186 2-4 2000 311 338
    • (2000) Computer Methods in Applied Mechanics and Engineering , vol.186 , Issue.24 , pp. 311-338
    • Deb, K.1
  • 26
    • 0036885602 scopus 로고    scopus 로고
    • Computationally efficient evolutionary algorithm for real-parameter optimization
    • K. Deb, A. Anand, and D.A. Joshi Computationally efficient evolutionary algorithm for real-parameter optimization Evolutionary Computation 10 4 2002 371 395
    • (2002) Evolutionary Computation , vol.10 , Issue.4 , pp. 371-395
    • Deb, K.1    Anand, A.2    Joshi, D.A.3
  • 29
    • 34248143032 scopus 로고    scopus 로고
    • Covariance matrix adaptation for multi-objective optimization
    • C Igel, N Hansen, and S. Roth Covariance matrix adaptation for multi-objective optimization Evolutionary Computation 15 1 2007 1 28
    • (2007) Evolutionary Computation , vol.15 , Issue.1 , pp. 1-28
    • Igel, C.1    Hansen, N.2    Roth, S.3
  • 30
    • 79953823074 scopus 로고    scopus 로고
    • Not all parents are equal for MO-CMA-ES. In: Takahashi RC, Deb K, Wanner E, Greco S., editors
    • Berlin/Heidelberg: Springer
    • Loshchilov I, Schoenauer M, Sebag M. Not all parents are equal for MO-CMA-ES. In: Takahashi RC, Deb K, Wanner E, Greco S., editors. Evolutionary multi-criterion optimization. Berlin/Heidelberg: Springer; 2011. p. 31-45
    • (2011) Evolutionary Multi-criterion Optimization , pp. 31-45
    • Loshchilov, I.1    Schoenauer, M.2    Sebag, M.3
  • 32
    • 80051962301 scopus 로고    scopus 로고
    • Review of constraint-handling techniques for evolution strategies
    • O.A. Kramer Review of constraint-handling techniques for evolution strategies Applied Computational Intelligence and Soft Computing 2010 1 2010 1 11
    • (2010) Applied Computational Intelligence and Soft Computing , vol.2010 , Issue.1 , pp. 1-11
    • Kramer, O.A.1
  • 35
    • 14844307657 scopus 로고    scopus 로고
    • A simple multimembered evolution strategy to solve constrained optimization problems
    • DOI 10.1109/TEVC.2004.836819
    • E. Mezura-Montes, and C.A.A Coello Coello Simple multimembered evolution strategy to solve constrained optimization problems IEEE Transactions on Evolutionary Computation 9 1 2005 1 17 (Pubitemid 40337296)
    • (2005) IEEE Transactions on Evolutionary Computation , vol.9 , Issue.1 , pp. 1-17
    • Mezura-Montes, E.1    Coello Coello, C.A.2
  • 37
    • 84879041684 scopus 로고    scopus 로고
    • Web Page, (30.06.2012)
    • Suganthan PN. Performance comparison and analysis.Web Page, 〈http://www3.ntu.edu.sg/home/epnsugan/index-files/ CEC10-Const/CEC2010-COMPARISON2.pdf⌠(30.06.2012); 2010
    • (2010) Performance Comparison and Analysis
    • Suganthan, P.N.1
  • 38
    • 79959399013 scopus 로고    scopus 로고
    • An improved self-adaptive differential evolution algorithm in single objective constrained real-parameter optimization
    • J. Brest, B. Boskovic, and V. Zumer An improved self-adaptive differential evolution algorithm in single objective constrained real-parameter optimization IEEE 2010 1073 1080
    • (2010) IEEE , pp. 1073-1080
    • Brest, J.1    Boskovic, B.2    Zumer, V.3
  • 39
    • 79959404599 scopus 로고    scopus 로고
    • An ensemble of differential evolution algorithms for constrained function optimization. In: IEEE congress on evolutionary computation
    • M.F. Tasgetiren, P.N. Suganthan, Q.-K. Pan, R. Mallipeddi, and S. Sarman An ensemble of differential evolution algorithms for constrained function optimization. In: IEEE congress on evolutionary computation IEEE 2010 1 8
    • (2010) IEEE , pp. 1-8
    • Tasgetiren, M.F.1    Suganthan, P.N.2    Pan, Q.-K.3    Mallipeddi, R.4    Sarman, S.5
  • 40
    • 79959446440 scopus 로고    scopus 로고
    • Constrained optimization by the ε constrained differential evolution with an archive and gradient-based mutation
    • T. Takahama, and S. Sakai Constrained optimization by the ε constrained differential evolution with an archive and gradient-based mutation IEEE 2010 1680 1688
    • (2010) IEEE , pp. 1680-1688
    • Takahama, T.1    Sakai, S.2
  • 44
    • 79959443028 scopus 로고    scopus 로고
    • Differential evolution with ensemble of constraint handling techniques for solving CEC 2010 benchmark problems
    • R. Mallipeddi, and P.N. Suganthan Differential evolution with ensemble of constraint handling techniques for solving CEC 2010 benchmark problems IEEE Congress on Evolutionary Computation: IEEE 2010 1907 1914
    • (2010) IEEE Congress on Evolutionary Computation: IEEE , pp. 1907-1914
    • Mallipeddi, R.1    Suganthan, P.N.2
  • 46
    • 79959453520 scopus 로고    scopus 로고
    • Performance of infeasibility empowered memetic algorithm for CEC 2010 constrained optimization problems
    • H.K. Singh, T. Ray, and W. Smith Performance of infeasibility empowered memetic algorithm for CEC 2010 constrained optimization problems IEEE Congress on Evolutionary Computation: IEEE 2010 3770 3777
    • (2010) IEEE Congress on Evolutionary Computation: IEEE , pp. 3770-3777
    • Singh, H.K.1    Ray, T.2    Smith, W.3
  • 47
    • 79959455015 scopus 로고    scopus 로고
    • Hybrid gradient projection based Genetic Algorithms for constrained optimization
    • A. Saha, R. Datta, and K. Deb Hybrid gradient projection based Genetic Algorithms for constrained optimization IEEE Congress on Evolutionary Computation: IEEE 2010 2851 2858
    • (2010) IEEE Congress on Evolutionary Computation: IEEE , pp. 2851-2858
    • Saha, A.1    Datta, R.2    Deb, K.3
  • 48
    • 70449793815 scopus 로고    scopus 로고
    • Performance of infeasibility driven evolutionary algorithm (IDEA) on constrained dynamic single objective optimization problems
    • H.K. Singh, A. Isaacs, T.T. Nguyen, and T. Ray Performance of infeasibility driven evolutionary algorithm (IDEA) on constrained dynamic single objective optimization problems IEEE Congress on Evolutionary Computation: IEEE 2009 3127 3134
    • (2009) IEEE Congress on Evolutionary Computation: IEEE , pp. 3127-3134
    • Singh, H.K.1    Isaacs, A.2    Nguyen, T.T.3    Ray, T.4
  • 49
    • 0002207938 scopus 로고
    • A fast algorithm for nonlinearly constrained optimization calculations
    • G. Watson, Springer Berlin/Heidelberg
    • M. Powell A fast algorithm for nonlinearly constrained optimization calculations G. Watson, Numerical analysis 1978 Springer Berlin/Heidelberg 144 157
    • (1978) Numerical Analysis , pp. 144-157
    • Powell, M.1
  • 52
    • 29144511552 scopus 로고    scopus 로고
    • Constraint handling in genetic algorithms using a gradient-based repair method
    • DOI 10.1016/j.cor.2005.02.002, PII S030505480500050X
    • P. Chootinan, and A. Chen Constraint handling in genetic algorithms using a gradient-based repair method Computers and Operations Research 33 8 2006 2263 2281 (Pubitemid 41802289)
    • (2006) Computers and Operations Research , vol.33 , Issue.8 , pp. 2263-2281
    • Chootinan, P.1    Chen, A.2
  • 53
  • 54
    • 64549120231 scopus 로고    scopus 로고
    • A study of statistical techniques and performance measures for genetics-based machine learning: Accuracy and interpretability
    • S. Garcia, A. Fernandez, J. Luengo, and F. Herrera A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability Soft Computing 13 10 2008 959 977
    • (2008) Soft Computing , vol.13 , Issue.10 , pp. 959-977
    • Garcia, S.1    Fernandez, A.2    Luengo, J.3    Herrera, F.4
  • 55
    • 0002294347 scopus 로고
    • A simple sequentially rejective multiple test procedure
    • S. Holm A simple sequentially rejective multiple test procedure Scandinavian Journal of Statistics 6 2 1979 65 70
    • (1979) Scandinavian Journal of Statistics , vol.6 , Issue.2 , pp. 65-70
    • Holm, S.1
  • 56
    • 84855440057 scopus 로고    scopus 로고
    • Ockham's Razor in memetic computing: Three stage optimal memetic exploration
    • G. Iacca, F. Neri, E. Mininno, Y.-S. Ong, and M.-H. Lim Ockham's Razor in memetic computing: three stage optimal memetic exploration Information Sciences 188 2012 17 43
    • (2012) Information Sciences , vol.188 , pp. 17-43
    • Iacca, G.1    Neri, F.2    Mininno, E.3    Ong, Y.-S.4    Lim, M.-H.5
  • 57
    • 80051958754 scopus 로고    scopus 로고
    • Integrated strategies differential evolution algorithm with a local search for constrained optimization
    • S.M. Elsayed, R.A. Sarker, and D.L. Essam Integrated strategies differential evolution algorithm with a local search for constrained optimization IEEE Congress on Evolutionary Computation: IEEE 2011 2618 2625.
    • (2011) IEEE Congress on Evolutionary Computation: IEEE , pp. 2618-2625
    • Elsayed, S.M.1    Sarker, R.A.2    Essam, D.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.