메뉴 건너뛰기




Volumn 22, Issue SUPPL.1, 2013, Pages 17-26

A new pruning method for decision tree based on structural risk of leaf node

Author keywords

Decision tree; Pruning; Structural risk; Volume of leaf node

Indexed keywords

BENCHMARK DATASETS; COST-COMPLEXITY PRUNING; CROSS VALIDATION; GENERALIZATION PERFORMANCE; PRUNING; PRUNING ALGORITHMS; STRUCTURAL RISKS; VOLUME OF LEAF NODE;

EID: 84878012828     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-012-1055-6     Document Type: Article
Times cited : (6)

References (15)
  • 2
    • 40849088010 scopus 로고    scopus 로고
    • A k-norm pruning algorithm for decision tree classifiers based on error rate estimation
    • Zhong M, Georgiopoulos M, Anagnostopoulos G (2008) A k-norm pruning algorithm for decision tree classifiers based on error rate estimation. Mach Learn 71(1): 55-88.
    • (2008) Mach Learn , vol.71 , Issue.1 , pp. 55-88
    • Zhong, M.1    Georgiopoulos, M.2    Anagnostopoulos, G.3
  • 3
    • 77951253366 scopus 로고    scopus 로고
    • A new node splitting measure for decision tree construction
    • Chandra B, Kothari R, Paul P (2010) A new node splitting measure for decision tree construction. Pattern Recogn 43(8): 2725-2731.
    • (2010) Pattern Recogn , vol.43 , Issue.8 , pp. 2725-2731
    • Chandra, B.1    Kothari, R.2    Paul, P.3
  • 4
    • 0030190032 scopus 로고    scopus 로고
    • Technical note: some properties of splitting criteria
    • Breiman L (1996) Technical note: some properties of splitting criteria. Mach Learn 24(1): 41-47.
    • (1996) Mach Learn , vol.24 , Issue.1 , pp. 41-47
    • Breiman, L.1
  • 5
    • 0028443644 scopus 로고
    • Trading accuracy for simplicity in decision trees
    • Bohanec M, Bratko I (1994) Trading accuracy for simplicity in decision trees. Mach Learn 15(3): 223-250.
    • (1994) Mach Learn , vol.15 , Issue.3 , pp. 223-250
    • Bohanec, M.1    Bratko, I.2
  • 7
    • 0031101089 scopus 로고    scopus 로고
    • Simplifying decision trees: a survey
    • Leonard A, Wavid W (1997) Simplifying decision trees: a survey. Knowl Eng Rev 12(1): 1-40.
    • (1997) Knowl Eng Rev , vol.12 , Issue.1 , pp. 1-40
    • Leonard, A.1    Wavid, W.2
  • 8
    • 79952785777 scopus 로고
    • An empirical comparison of pruning methods for decision tree induction
    • Mingers J (1989) An empirical comparison of pruning methods for decision tree induction. Mach Learn 4(2): 227-243.
    • (1989) Mach Learn , vol.4 , Issue.2 , pp. 227-243
    • Mingers, J.1
  • 10
    • 0005801045 scopus 로고
    • Learning decision rules in noisy domains
    • Cambridge University Press, New York
    • Niblett T, Bratko I (1986) Learning decision rules in noisy domains. In: Proceedings of expert systems'86. Cambridge University Press, New York, pp 25-34.
    • (1986) Proceedings of expert systems'86 , pp. 25-34
    • Niblett, T.1    Bratko, I.2
  • 11
    • 0023417432 scopus 로고
    • Simplifying decision trees
    • Quinlan J (1987) Simplifying decision trees. Int J Man Mach Stud 27(3): 221-234.
    • (1987) Int J Man Mach Stud , vol.27 , Issue.3 , pp. 221-234
    • Quinlan, J.1
  • 12
    • 25444530689 scopus 로고    scopus 로고
    • Maximum a posteriori pruning on decision trees and its application to bootstrap BUMPing
    • Kim J, Kim Y (2006) Maximum a posteriori pruning on decision trees and its application to bootstrap BUMPing. Comput Stat Data Anal 50(3): 710-719.
    • (2006) Comput Stat Data Anal , vol.50 , Issue.3 , pp. 710-719
    • Kim, J.1    Kim, Y.2
  • 14
    • 0002117591 scopus 로고
    • A further comparison of splitting rules for decision-tree Induction
    • Buntine W, Niblett T (1992) A further comparison of splitting rules for decision-tree Induction. Mach Learn 8(1): 75-85.
    • (1992) Mach Learn , vol.8 , Issue.1 , pp. 75-85
    • Buntine, W.1    Niblett, T.2
  • 15
    • 0003408496 scopus 로고    scopus 로고
    • Dept. of Information and Computer Sciences, University of California, Irvine
    • Blake C, Merz C (1998) UCI repository of machine learning databases. Dept. of Information and Computer Sciences, University of California, Irvine. http://www. ics. uci. edu/~mlearn/MLRepository. html.
    • (1998) UCI repository of machine learning databases
    • Blake, C.1    Merz, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.