-
5
-
-
72949117426
-
-
W. J. Youngblood, S.-H. A. Lee, K. Maeda, T. E. Mallouk, Acc. Chem. Res. 2009, 42, 1966.
-
(2009)
Acc. Chem. Res.
, vol.42
, pp. 1966
-
-
Youngblood, W.J.1
Lee, S.-H.A.2
Maeda, K.3
Mallouk, T.E.4
-
8
-
-
44949200319
-
-
X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li, J. Am. Chem. Soc. 2008, 130, 7176.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 7176
-
-
Zong, X.1
Yan, H.2
Wu, G.3
Ma, G.4
Wen, F.5
Wang, L.6
Li, C.7
-
9
-
-
75749106272
-
-
X. Zong, G. Wu, H. Yan, G. Ma, J. Shi, F. Wen, L. Wang, C. Li, J. Phys. Chem. C 2010, 114, 1963.
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 1963
-
-
Zong, X.1
Wu, G.2
Yan, H.3
Ma, G.4
Shi, J.5
Wen, F.6
Wang, L.7
Li, C.8
-
10
-
-
77954045863
-
-
M. Tabata, K. Maeda, T. Ishihara, T. Minegishi, T. Takata, K. Domen, J. Phys. Chem. C 2010, 114, 11215.
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 11215
-
-
Tabata, M.1
Maeda, K.2
Ishihara, T.3
Minegishi, T.4
Takata, T.5
Domen, K.6
-
11
-
-
77957661311
-
-
)W. Zhang, Y. Wang, Z. Wang, Z. Zhong, R. Xu, Chem. Commun. 2010, 46, 7631.
-
(2010)
Chem. Commun.
, vol.46
, pp. 7631
-
-
Zhang, W.1
Wang, Y.2
Wang, Z.3
Zhong, Z.4
Xu, R.5
-
12
-
-
47249165528
-
-
J. S. Jang, D. J. Ham, N. Lakshminarasimhan, W. Choi, J. S. Lee, Appl. Catal. A 2008, 346, 149.
-
(2008)
Appl. Catal. A
, vol.346
, pp. 149
-
-
Jang, J.S.1
Ham, D.J.2
Lakshminarasimhan, N.3
Choi, W.4
Lee, J.S.5
-
13
-
-
84862908379
-
-
J. Zhang, M. Grzelczak, K. Maeda, K. Domen, X. Fu, M. Antonietti, X. Wang, Chem. Sci. 2012, 3, 443.
-
(2012)
Chem. Sci.
, vol.3
, pp. 443
-
-
Zhang, J.1
Grzelczak, M.2
Maeda, K.3
Domen, K.4
Fu, X.5
Antonietti, M.6
Wang, X.7
-
14
-
-
20444433099
-
-
K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi, K. Domen, J. Am. Chem. Soc. 2005, 127, 8286.
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 8286
-
-
Maeda, K.1
Takata, T.2
Hara, M.3
Saito, N.4
Inoue, Y.5
Kobayashi, H.6
Domen, K.7
-
15
-
-
33645027408
-
-
K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature 2006, 440, 295.
-
(2006)
Nature
, vol.440
, pp. 295
-
-
Maeda, K.1
Teramura, K.2
Lu, D.3
Takata, T.4
Saito, N.5
Inoue, Y.6
Domen, K.7
-
16
-
-
33847657062
-
-
Y. Lee, H. Terashima, Y. Shimodaira, K. Teramura, M. Hara, H. Kobayashi, K. Domen, M. Yashima, J. Phys. Chem. C 2007, 111, 1042.
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 1042
-
-
Lee, Y.1
Terashima, H.2
Shimodaira, Y.3
Teramura, K.4
Hara, M.5
Kobayashi, H.6
Domen, K.7
Yashima, M.8
-
17
-
-
34247574641
-
-
Y. Lee, K. Teramura, M. Hara, K. Domen, Chem. Mater. 2007, 19, 2120.
-
(2007)
Chem. Mater.
, vol.19
, pp. 2120
-
-
Lee, Y.1
Teramura, K.2
Hara, M.3
Domen, K.4
-
18
-
-
0036056289
-
-
G. Hitoki, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen, Chem. Commun. 2002, 1698.
-
(2002)
Chem. Commun.
, vol.1698
-
-
Hitoki, G.1
Takata, T.2
Kondo, J.N.3
Hara, M.4
Kobayashi, H.5
Domen, K.6
-
19
-
-
0037024815
-
-
G. Hitoki, A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, K. Domen, Chem. Lett. 2002, 31, 736
-
(2002)
Chem. Lett.
, vol.31
, pp. 736
-
-
Hitoki, G.1
Ishikawa, A.2
Takata, T.3
Kondo, J.N.4
Hara, M.5
Domen, K.6
-
20
-
-
0036601570
-
-
G. Hitoki, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen, Electrochemistry 2002, 70, 463.
-
(2002)
Electrochemistry
, vol.70
, pp. 463
-
-
Hitoki, G.1
Takata, T.2
Kondo, J.N.3
Hara, M.4
Kobayashi, H.5
Domen, K.6
-
21
-
-
58149190180
-
-
K. Maeda, H. Terashima, K. Kase, M. Higashi, M. Tabata, K. Domen, Bull. Chem. Soc. Jpn. 2008, 81, 927.
-
(2008)
Bull. Chem. Soc. Jpn.
, vol.81
, pp. 927
-
-
Maeda, K.1
Terashima, H.2
Kase, K.3
Higashi, M.4
Tabata, M.5
Domen, K.6
-
22
-
-
77952567707
-
-
K. Maeda, M. Higashi, D. Lu, R. Abe, K. Domen, J. Am. Chem. Soc. 2010, 132, 5858
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 5858
-
-
Maeda, K.1
Higashi, M.2
Lu, D.3
Abe, R.4
Domen, K.5
-
23
-
-
84859347558
-
-
S. S. K. Ma, K. Maeda, K. Domen, Catal. Sci. Technol. 2012, 2, 818.
-
(2012)
Catal. Sci. Technol.
, vol.2
, pp. 818
-
-
Ma, S.S.K.1
Maeda, K.2
Domen, K.3
-
24
-
-
65449160457
-
-
K. Maeda, K. Teramura, D. Lu, N. Saito, Y. Inoue, K. Domen, Angew. Chem. 2006, 118, 7970.
-
(2006)
Angew. Chem.
, vol.118
, pp. 7970
-
-
Maeda, K.1
Teramura, K.2
Lu, D.3
Saito, N.4
Inoue, Y.5
Domen, K.6
-
26
-
-
34250177292
-
-
K. Maeda, K. Teramura, D. Lu, N. Saito, Y. Inoue, K. Domen, J. Phys. Chem. C 2007, 111, 7554.
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 7554
-
-
Maeda, K.1
Teramura, K.2
Lu, D.3
Saito, N.4
Inoue, Y.5
Domen, K.6
-
27
-
-
77954340278
-
-
K. Maeda, N. Sakamoto, T. Ikeda, H. Ohtsuka, A. Xiong, D. Lu, M. Kanehara, T. Teranishi, K. Domen, Chem. Eur. J. 2010, 16, 7750.
-
(2010)
Chem. Eur. J.
, vol.16
, pp. 7750
-
-
Maeda, K.1
Sakamoto, N.2
Ikeda, T.3
Ohtsuka, H.4
Xiong, A.5
Lu, D.6
Kanehara, M.7
Teranishi, T.8
Domen, K.9
-
28
-
-
84877846131
-
-
It was also confirmed by means of XPS that ZrO2/TaON (without RuOx deposition) treated by K2CrO4 under visible light exhibited a negligible photoelectron signal of Cr, which meant that Cr2O3 was deposited dominantly on RuOx (not ZrO2/TaON)
-
It was also confirmed by means of XPS that ZrO2/TaON (without RuOx deposition) treated by K2CrO4 under visible light exhibited a negligible photoelectron signal of Cr, which meant that Cr2O3 was deposited dominantly on RuOx (not ZrO2/TaON
-
-
-
-
29
-
-
84877865095
-
-
We Have Revealed That The ZrO2 Modifiers On TaON Are Deposited In The Form Of Well-crystallized Nanoparticles With 10-30 Nm In Size With Some Aggregation (see Ref. [9c]). Therefore The ZrO2 Component In ZrO2TaON Is Distinguishable In HRTEM Images. As Shown In Figure S2 In The Supporting Information It Can Be Seen That 1-2 nm RuOx nanoparticles are deposited on the ZrO2 component. The fact that only uncoated RuOx nanoparticles (not core/shell-structured RuOx/Cr2O3) are observed on ZrO2 is highly convincing because charge transfer between ZrO2 and TaON from one side to the other does not occur, and ZrO2 is not activated by visible light due to the large band gap (see ref. [9a])
-
We have revealed that the ZrO2 modifiers on TaON are deposited in the form of well-crystallized nanoparticles with 10-30 nm in size with some aggregation (see ref. [9c]). Therefore, the ZrO2 component in ZrO2/TaON is distinguishable in HRTEM images. As shown in Figure S2 in the Supporting Information, it can be seen that 1-2 nm RuOx nanoparticles are deposited on the ZrO2 component. The fact that only uncoated RuOx nanoparticles (not core/shell-structured RuOx/Cr2O3) are observed on ZrO2 is highly convincing because charge transfer between ZrO2 and TaON from one side to the other does not occur, and ZrO2 is not activated by visible light due to the large band gap (see ref. [9a]
-
-
-
-
30
-
-
37049070337
-
-
A. Harriman, I. J. Pickering, J. M. Thomas, P. A. Christensen, J. Chem. Soc. Faraday Trans. 1 1988, 84, 2795.
-
(1988)
J. Chem. Soc. Faraday Trans.
, vol.1
, Issue.84
, pp. 2795
-
-
Harriman, A.1
Pickering, I.J.2
Thomas, J.M.3
Christensen, P.A.4
-
31
-
-
84877846801
-
-
We have tried to observe colloidal IrO2 nanoparticles loaded on Cr2O3/RuOx/ZrO2/TaON by TEM. However, it was difficult to confirm the location primarily because of the low concentration and the overlapping of Ir signals in the energy dispersive X-ray spectrum with Zr signals
-
We have tried to observe colloidal IrO2 nanoparticles loaded on Cr2O3/RuOx/ZrO2/TaON by TEM. However, it was difficult to confirm the location primarily because of the low concentration and the overlapping of Ir signals in the energy dispersive X-ray spectrum with Zr signals.
-
-
-
-
32
-
-
84877842477
-
-
Because it was difficult to measure AQY for overall water splitting on IrO2/Cr2O3/RuOx/ZrO2/TaON by using a monochromator primarily due to the slow reaction rate, we estimated AQY by comparing several reaction data. ZrO2/TaON modified with Pt exhibits activity for H2 evolution from a water/methanol mixture with an AQY of approximately 1.7% at 420 nm (see ref. [9c]). The same material, Pt/ZrO2/TaON, suspended in an aqueous methanol solution was of course able to photocatalyze water reduction under the present reaction conditions, producing ca. 60 mmolhä1 H2 (see Figure S5 in the Supporting Information), which is about 20 times faster than that achieved in overall water splitting (Figure 4). Taken together, the AQY of IrO2/Cr2O3/RuOx/ZrO2/TaON for overall water splitting can be roughly estimated to be at most ~0.1% at 420 nm
-
Because it was difficult to measure AQY for overall water splitting on IrO2/Cr2O3/RuOx/ZrO2/TaON by using a monochromator primarily due to the slow reaction rate, we estimated AQY by comparing several reaction data. ZrO2/TaON modified with Pt exhibits activity for H2 evolution from a water/methanol mixture with an AQY of approximately 1.7% at 420 nm (see ref. [9c]). The same material, Pt/ZrO2/TaON, suspended in an aqueous methanol solution was of course able to photocatalyze water reduction under the present reaction conditions, producing ca. 60 mmolhä1 H2 (see Figure S5 in the Supporting Information), which is about 20 times faster than that achieved in overall water splitting (Figure 4). Taken together, the AQY of IrO2/Cr2O3/RuOx/ZrO2/TaON for overall water splitting can be roughly estimated to be at most ~0.1% at 420 nm.
-
-
-
-
33
-
-
67449136535
-
-
M. Yoshida, K. Takanabe, K. Maeda, A. Ishikawa, J. Kubota, Y. Sakata, Y. Ikezawa, K. Domen, J. Phys. Chem. C 2009, 113, 10151.
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 10151
-
-
Yoshida, M.1
Takanabe, K.2
Maeda, K.3
Ishikawa, A.4
Kubota, J.5
Sakata, Y.6
Ikezawa, Y.7
Domen, K.8
-
35
-
-
0001786914
-
-
K. Domen, A. Kudo, T. Onishi, J. Catal. 1986, 102, 92.
-
(1986)
J. Catal.
, vol.102
, pp. 92
-
-
Domen, K.1
Kudo, A.2
Onishi, T.3
-
36
-
-
33748672716
-
-
K. Sayama, H. Arakawa, J. Chem. Soc. Faraday Trans. 1997, 93, 1647; c) K. Sayama, H. Arakawa, J. Photochem. Photobiol. A 1996, 94, 67; d) K. Maeda, K. Teramura, H. Masuda, T. Takata, N. Saito, Y. Inoue, K. Domen, J. Phys. Chem. B 2006, 110, 13107.
-
(1997)
J. Chem. Soc. Faraday Trans.
, vol.93
, pp. 1647
-
-
Sayama, K.1
Arakawa, H.2
-
37
-
-
34147189537
-
-
K. Maeda, N. Saito, D. Lu, Y. Inoue, K. Domen, J. Phys. Chem. C 2007, 111, 4749.
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 4749
-
-
Maeda, K.1
Saito, N.2
Lu, D.3
Inoue, Y.4
Domen, K.5
-
39
-
-
79951917726
-
-
K. Maeda, R. Abe, K. Domen, J. Phys. Chem. C 2011, 115, 3057.
-
(2011)
J. Phys. Chem. C
, vol.115
, pp. 3057
-
-
Maeda, K.1
Abe, R.2
Domen, K.3
-
40
-
-
77956040237
-
-
R. Abe, M. Higashi, K. Domen, J. Am. Chem. Soc. 2010, 132, 11828.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 11828
-
-
Abe, R.1
Higashi, M.2
Domen, K.3
-
41
-
-
17444372020
-
-
M. Yagi, E. Tomita, T. Kuwabara, J. Electroanal. Chem. 2005, 579, 83.
-
(2005)
J. Electroanal. Chem.
, vol.579
, pp. 83
-
-
Yagi, M.1
Tomita, E.2
Kuwabara, T.3
-
42
-
-
70350633945
-
-
T. Nakagawa, N. S. Bjorge, R. W. Murray, J. Am. Chem. Soc. 2009, 131, 15578.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 15578
-
-
Nakagawa, T.1
Bjorge, N.S.2
Murray, R.W.3
-
43
-
-
79952334197
-
-
Y. Zhao, E. A. Hernandez-Pagan, N. M. Vargas-Barbosa, J. L. Dysart, T. E. Mallouk, J. Phys. Chem. Lett. 2011, 2, 402.
-
(2011)
J. Phys. Chem. Lett.
, vol.2
, pp. 402
-
-
Zhao, Y.1
Hernandez-Pagan, E.A.2
Vargas-Barbosa, N.M.3
Dysart, J.L.4
Mallouk, T.E.5
-
44
-
-
79955882528
-
-
F. A. Frame, T. K. Townsend, R. L. Chamousis, E. M. Sabio, T. Dittrich, N. D. Browning, F. E. Osterloh, J. Am. Chem. Soc. 2011, 133, 7264.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 7264
-
-
Frame, F.A.1
Townsend, T.K.2
Chamousis, R.L.3
Sabio, E.M.4
Dittrich, T.5
Browning, N.D.6
Osterloh, F.E.7
-
45
-
-
40449141643
-
-
M. Higashi, R. Abe, A. Ishikawa, T. Takata, B. Ohtani, K. Domen, Chem. Lett. 2008, 37, 138.
-
(2008)
Chem. Lett.
, vol.37
, pp. 138
-
-
Higashi, M.1
Abe, R.2
Ishikawa, A.3
Takata, T.4
Ohtani, B.5
Domen, K.6
|