메뉴 건너뛰기




Volumn 2, Issue , 2012, Pages 1583-1591

Selecting diverse features via spectral regularization

Author keywords

[No Author keywords available]

Indexed keywords

INTERPRETABILITY; LOCAL SEARCH ALGORITHM; OBJECTIVE FUNCTIONS; REGRESSION PROBLEM; REGULARIZATION SCHEMES; ROBUSTNESS TO NOISE; SUBMODULAR FUNCTIONS; SUBMODULAR SET FUNCTIONS;

EID: 84877773116     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (41)

References (25)
  • 2
    • 80053451705 scopus 로고    scopus 로고
    • Parallel coordinate descent for l1-regularized loss minimization
    • J. K. Bradley, A. Kyrola, D. Bickson, and C. Guestrin. Parallel coordinate descent for l1-regularized loss minimization. In ICML, pages 321-328, 2011.
    • (2011) ICML , pp. 321-328
    • Bradley, J.K.1    Kyrola, A.2    Bickson, D.3    Guestrin, C.4
  • 3
    • 33745604236 scopus 로고    scopus 로고
    • Stable signal recovery from incomplete and inaccurate measurements
    • E. J. Candes, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate measurements. CPAM, 59:1207-1223, 2005.
    • (2005) CPAM , vol.59 , pp. 1207-1223
    • Candes, E.J.1    Romberg, J.2    Tao, T.3
  • 5
    • 80053452142 scopus 로고    scopus 로고
    • Submodular meets spectral: Greedy algorithms for subset selection, sparse approximation and dictionary selection
    • A. Das and D. Kempe. Submodular meets spectral: Greedy algorithms for subset selection, sparse approximation and dictionary selection. In ICML, pages 1057-1064, 2011.
    • (2011) ICML , pp. 1057-1064
    • Das, A.1    Kempe, D.2
  • 7
    • 84960463485 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • C. Ding and H. Peng. Minimum redundancy feature selection from microarray gene expression data. In J. Bioinform. Comput. Biol., pages 523-529, 2003.
    • (2003) J. Bioinform. Comput. Biol. , pp. 523-529
    • Ding, C.1    Peng, H.2
  • 8
    • 33645656824 scopus 로고    scopus 로고
    • For most large underdetermined systems of linear equations, the minimal 11-norm nearsolution approximates the sparsest near-solution
    • D. Donoho. For most large underdetermined systems of linear equations, the minimal 11-norm nearsolution approximates the sparsest near-solution. CPAM, 59:1207-1223, 2005.
    • (2005) CPAM , vol.59 , pp. 1207-1223
    • Donoho, D.1
  • 9
    • 80053189937 scopus 로고    scopus 로고
    • Maximizing non-monotone submodular functions
    • U. Feige, V. S. Mirrokni, and J. Vondrak. Maximizing non-monotone submodular functions. SIAM J. Comput, 40(4):1133-1153, 2011.
    • (2011) SIAM J. Comput , vol.40 , Issue.4 , pp. 1133-1153
    • Feige, U.1    Mirrokni, V.S.2    Vondrak, J.3
  • 10
    • 84877773986 scopus 로고    scopus 로고
    • Submodular spectral functions of principal submatrices of a Hermitian matrix, extensions and applications
    • S. Friedland and S. Gaubert. Submodular spectral functions of principal submatrices of a Hermitian matrix, extensions and applications. Linear Algebra and its Applications, 2011.
    • (2011) Linear Algebra and Its Applications
    • Friedland, S.1    Gaubert, S.2
  • 11
    • 0037740006 scopus 로고    scopus 로고
    • Approximation of functions over redundant dictionaries using coherence
    • A. Gilbert, S. Muthukrishnan, and M. Strauss. Approximation of functions over redundant dictionaries using coherence. In SODA, 2003.
    • (2003) SODA
    • Gilbert, A.1    Muthukrishnan, S.2    Strauss, M.3
  • 12
    • 85162319557 scopus 로고    scopus 로고
    • Trace Lasso: A trace norm regularization for correlated designs
    • E. Grave, G. Obozinski, and F. R. Bach. Trace Lasso: a trace norm regularization for correlated designs. In NIPS, 2011.
    • (2011) NIPS
    • Grave, E.1    Obozinski, G.2    Bach, F.R.3
  • 13
    • 31844450884 scopus 로고    scopus 로고
    • Near-optimal sensor placements in Gaussian processes
    • C. Guestrin, A. Krause, and A. Singh. Near-optimal sensor placements in Gaussian processes. In ICML, 2005.
    • (2005) ICML
    • Guestrin, C.1    Krause, A.2    Singh, A.3
  • 14
    • 78650896788 scopus 로고    scopus 로고
    • Constrained non-monotone submodular maximization: Offline and secretary algorithms
    • A. Gupta, A. Roth, G. Schoenebeck, and K. Talwar. Constrained non-monotone submodular maximization: Offline and secretary algorithms. In WINE, pages 246-257, 2010.
    • (2010) WINE , pp. 246-257
    • Gupta, A.1    Roth, A.2    Schoenebeck, G.3    Talwar, K.4
  • 17
    • 0000674872 scopus 로고
    • An exact algorithm for maximum entropy sampling
    • C.-W. Ko, J. Lee, and M. Queyranne. An exact algorithm for maximum entropy sampling. OR, 43(4):684-691, 1995.
    • (1995) OR , vol.43 , Issue.4 , pp. 684-691
    • Ko, C.-W.1    Lee, J.2    Queyranne, M.3
  • 20
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • R. Tibshirani. Regression shrinkage and selection via the Lasso. JRSS, 58:267-288, 1996.
    • (1996) JRSS , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 21
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: Algorithmic results for sparse approximation
    • J. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Information Theory, 50:2231-2242, 2004.
    • (2004) IEEE Trans. Information Theory , vol.50 , pp. 2231-2242
    • Tropp, J.1
  • 22
    • 33645712308 scopus 로고    scopus 로고
    • Just relax: Convex programming methods for identifying sparse signals
    • J. Tropp. Just relax: Convex programming methods for identifying sparse signals. IEEE TOIT, 51:1030-1051, 2006.
    • (2006) IEEE TOIT , vol.51 , pp. 1030-1051
    • Tropp, J.1
  • 23
    • 12244293653 scopus 로고    scopus 로고
    • Redundancy based feature selection for microarray data
    • L. Yu. Redundancy based feature selection for microarray data. In SIGKDD, pages 737-742, 2004.
    • (2004) SIGKDD , pp. 737-742
    • Yu, L.1
  • 24
    • 70049102918 scopus 로고    scopus 로고
    • Adaptive forward-backward greedy algorithm for sparse learning with linear models
    • T. Zhang. Adaptive forward-backward greedy algorithm for sparse learning with linear models. In NIPS, 2008.
    • (2008) NIPS
    • Zhang, T.1
  • 25
    • 84858715448 scopus 로고    scopus 로고
    • Thresholding procedures for high dimensional variable selection and statistical estimation
    • S. Zhou. Thresholding procedures for high dimensional variable selection and statistical estimation. In NIPS, 2009.
    • (2009) NIPS
    • Zhou, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.