메뉴 건너뛰기




Volumn 3, Issue , 2012, Pages 1673-1681

Convex multi-view subspace learning

Author keywords

[No Author keywords available]

Indexed keywords

CONDITIONAL INDEPENDENCES; HIGH QUALITY; LOW-DIMENSIONAL REPRESENTATION; MULTIPLE SOURCE; OPTIMAL DATA; REGULARIZER; SINGLE SOURCE; SUBSPACE LEARNING;

EID: 84877765673     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (158)

References (32)
  • 2
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • D. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical correlation analysis: An overview with application to learning methods. Neural Computation, 16:2639-2664, 2004.
    • (2004) Neural Computation , vol.16 , pp. 2639-2664
    • Hardoon, D.1    Szedmak, S.2    Shawe-Taylor, J.3
  • 4
    • 85162328823 scopus 로고    scopus 로고
    • Multi-view learning of word embeddings via CCA
    • P. Dhillon, D. Foster, and L. Ungar. Multi-view learning of word embeddings via CCA. In NIPS, 2011.
    • (2011) NIPS
    • Dhillon, P.1    Foster, D.2    Ungar, L.3
  • 5
    • 80053447827 scopus 로고    scopus 로고
    • Weakly-paired maximum covariance analysis for multimodal dimensionality reduction and transfer learning
    • C. Lampert and O. Krömer. Weakly-paired maximum covariance analysis for multimodal dimensionality reduction and transfer learning. In ECCV, 2010.
    • (2010) ECCV
    • Lampert, C.1    Krömer, O.2
  • 6
    • 70450181379 scopus 로고    scopus 로고
    • Shared kernel information embedding for discriminative inference
    • L. Sigal, R. Memisevic, and D. Fleet. Shared kernel information embedding for discriminative inference. In CVPR, 2009.
    • (2009) CVPR
    • Sigal, L.1    Memisevic, R.2    Fleet, D.3
  • 7
    • 33745859053 scopus 로고    scopus 로고
    • A probabilistic interpretation of canonical correlation analysis
    • University of California, Berkeley
    • F. Bach and M. Jordan. A probabilistic interpretation of canonical correlation analysis. Technical Report 688, Department of Statistics, University of California, Berkeley, 2006.
    • (2006) Technical Report 688, Department of Statistics
    • Bach, F.1    Jordan, M.2
  • 8
    • 84938401419 scopus 로고    scopus 로고
    • Sparse probabilistic projections
    • C. Archambeau and F. Bach. Sparse probabilistic projections. In NIPS, 2008.
    • (2008) NIPS
    • Archambeau, C.1    Bach, F.2
  • 9
    • 84877779299 scopus 로고    scopus 로고
    • Variational Bayesian mixture of robust CCA
    • J. Viinikanoja, A. Klami, and S. Kaski. Variational Bayesian mixture of robust CCA. In ECML, 2010.
    • (2010) ECML
    • Viinikanoja, J.1    Klami, A.2    Kaski, S.3
  • 10
    • 79960675858 scopus 로고    scopus 로고
    • Robust principal component analysis?
    • E. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? J.ACM, 58(1): 1-37, 2011.
    • (2011) J. ACM , vol.58 , Issue.1 , pp. 1-37
    • Candès, E.1    Li, X.2    Ma, Y.3    Wright, J.4
  • 11
    • 84877760261 scopus 로고    scopus 로고
    • Convex sparse coding, subspace learning, and semi-supervised extensions
    • X. Zhang, Y. Yu, M. White, R. Huang, and D. Schuurmans. Convex sparse coding, subspace learning, and semi-supervised extensions. In AAAI, 2011.
    • (2011) AAAI
    • Zhang, X.1    Yu, Y.2    White, M.3    Huang, R.4    Schuurmans, D.5
  • 13
    • 80053439603 scopus 로고    scopus 로고
    • Learning multi-view neighborhood preserving projections
    • N. Quadrinto and C. Lampert. Learning multi-view neighborhood preserving projections. In ICML, 2011.
    • (2011) ICML
    • Quadrinto, N.1    Lampert, C.2
  • 14
    • 85162037528 scopus 로고    scopus 로고
    • Factorized latent spaces with structured sparsity
    • Y. Jia, M. Salzmann, and T. Darrell. Factorized latent spaces with structured sparsity. In NIPS, pages 982-990, 2010.
    • (2010) NIPS , pp. 982-990
    • Jia, Y.1    Salzmann, M.2    Darrell, T.3
  • 15
    • 84877762797 scopus 로고    scopus 로고
    • Generalized optimal reverse prediction
    • M. White and D. Schuurmans. Generalized optimal reverse prediction. In AISTATS, 2012.
    • (2012) AISTATS
    • White, M.1    Schuurmans, D.2
  • 16
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning, 73(3):243-272, 2008.
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 19
    • 0012475858 scopus 로고    scopus 로고
    • A survey of trace inequalities
    • Banach Center
    • D. Petz. A survey of trace inequalities. In Functional Analysis and Operator Theory, pages 287-298. Banach Center, 2004.
    • (2004) Functional Analysis and Operator Theory , pp. 287-298
    • Petz, D.1
  • 20
    • 79957957723 scopus 로고    scopus 로고
    • Fixed point and Bregman iterative methods for matrix rank minimization
    • S. Ma, D. Goldfarb, and L. Chen. Fixed point and Bregman iterative methods for matrix rank minimization. Mathematical Programming, 128:321-353, 2011.
    • (2011) Mathematical Programming , vol.128 , pp. 321-353
    • Ma, S.1    Goldfarb, D.2    Chen, L.3
  • 21
    • 77951291046 scopus 로고    scopus 로고
    • A singular value thresholding algorithm for matrix completion
    • J. Cai, E. Candès, and Z. Shen. A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20(4):1956-1982, 2010.
    • (2010) SIAM Journal on Optimization , vol.20 , Issue.4 , pp. 1956-1982
    • Cai, J.1    Candès, E.2    Shen, Z.3
  • 22
    • 84877780790 scopus 로고    scopus 로고
    • Accelerated training for matrix-norm regularization: A boosting approach
    • X. Zhang, Y. Yu, and D. Schuurmans. Accelerated training for matrix-norm regularization: A boosting approach. In NIPS, 2012.
    • (2012) NIPS
    • Zhang, X.1    Yu, Y.2    Schuurmans, D.3
  • 23
    • 85162449444 scopus 로고    scopus 로고
    • Greedy algorithms for structurally constrained high dimensional problems
    • A. Tewari, P. Ravikumar, and I. S. Dhillon. Greedy algorithms for structurally constrained high dimensional problems. In NIPS, 2011.
    • (2011) NIPS
    • Tewari, A.1    Ravikumar, P.2    Dhillon, I.S.3
  • 24
    • 84877745344 scopus 로고    scopus 로고
    • Forward basis selection for sparse approximation over dictionary
    • X. Yuan and S. Yan. Forward basis selection for sparse approximation over dictionary. In AISTATS, 2012.
    • (2012) AISTATS
    • Yuan, X.1    Yan, S.2
  • 25
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202, 2009.
    • (2009) SIAM Journal on Imaging Sciences , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 26
    • 80052408863 scopus 로고    scopus 로고
    • Fast alternating linearization methods for minimizing the sum of two convex functions
    • to appear
    • D. Goldfarb, S. Ma, and K. Scheinberg. Fast alternating linearization methods for minimizing the sum of two convex functions. Mathematical Programming, to appear.
    • Mathematical Programming
    • Goldfarb, D.1    Ma, S.2    Scheinberg, K.3
  • 27
    • 0035363672 scopus 로고    scopus 로고
    • From few to many: Illumination cone models for face recognition under variable lighting and pose
    • A. Georghiades, P. Belhumeur, and D. Kriegman. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE TPAMI, 23:643-660, 2001.
    • (2001) IEEE TPAMI , vol.23 , pp. 643-660
    • Georghiades, A.1    Belhumeur, P.2    Kriegman, D.3
  • 28
    • 78649325096 scopus 로고    scopus 로고
    • Canonical correlation analysis for multilabel classification: A leastsquares formulation, extensions, and analysis
    • L. Sun, S. Ji, and J. Ye. Canonical correlation analysis for multilabel classification: A leastsquares formulation, extensions, and analysis. IEEE TPAMI, 33(1):194-200, 2011.
    • (2011) IEEE TPAMI , vol.33 , Issue.1 , pp. 194-200
    • Sun, L.1    Ji, S.2    Ye, J.3
  • 29
    • 34250080273 scopus 로고
    • Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices
    • M. Overton and R. Womersley. Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices. Mathematical Programming, 62:321-357, 1993.
    • (1993) Mathematical Programming , vol.62 , pp. 321-357
    • Overton, M.1    Womersley, R.2
  • 30
    • 52649115862 scopus 로고    scopus 로고
    • A general model for multiple view unsupervised learning
    • B. Long, P. Yu, and Z. Zhang. A general model for multiple view unsupervised learning. In ICDM, 2008.
    • (2008) ICDM
    • Long, B.1    Yu, P.2    Zhang, Z.3
  • 31
    • 0032070507 scopus 로고    scopus 로고
    • On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues
    • G. Pataki. On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues. Mathematics of Operations Research, 23(2):339-358, 1998.
    • (1998) Mathematics of Operations Research , vol.23 , Issue.2 , pp. 339-358
    • Pataki, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.