-
1
-
-
0000675721
-
Context-specific independence in Bayesian networks
-
Craig Boutilier, Nir Friedman, Moises Goldszmidt, and Daphne Koller. Context-specific independence in Bayesian networks. In Uncertainty in Artificial Intelligence, pages 115-123, 1996.
-
(1996)
Uncertainty in Artificial Intelligence
, pp. 115-123
-
-
Boutilier, C.1
Friedman, N.2
Goldszmidt, M.3
Koller, D.4
-
2
-
-
0039289571
-
What is wrong with Bayes nets?
-
Nancy Cartwright. What is wrong with Bayes nets? The Monist, pages 242-264, 2001.
-
(2001)
The Monist
, pp. 242-264
-
-
Cartwright, N.1
-
3
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Gregory F. Cooper and Edward Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9: 309-347, 1992.
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
5
-
-
17044423540
-
Are there algorithms that discover causal structure?
-
David A. Freedman and Paul Humphreys. Are there algorithms that discover causal structure? Synthese, 121: 29-54, 1999.
-
(1999)
Synthese
, vol.121
, pp. 29-54
-
-
Freedman, D.A.1
Humphreys, P.2
-
7
-
-
0035443482
-
Algorithmic statistics
-
Péter Gács, John Tromp, and Paul M. B. Vitányi. Algorithmic statistics. IEEE Trans. Inform. Theory, 47(6): 2443-2463, 2001.
-
(2001)
IEEE Trans. Inform. Theory
, vol.47
, Issue.6
, pp. 2443-2463
-
-
Gács, P.1
Tromp, J.2
Vitányi, P.M.B.3
-
11
-
-
0003846045
-
Learning Bayesian networks: the combination of knowledge and statistical data
-
Technical Report MSR-TR-94-09, Microsoft Research
-
David Heckerman, Dan Geiger, and David Chickering. Learning Bayesian networks: the combination of knowledge and statistical data. Technical Report MSR-TR-94-09, Microsoft Research, 1994.
-
(1994)
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.3
-
14
-
-
33751171513
-
The power of intervention
-
Kevin B. Korb and Erik Nyberg. The power of intervention. Minds and Machines, 16(3): 289-302, 2006.
-
(2006)
Minds and Machines
, vol.16
, Issue.3
, pp. 289-302
-
-
Korb, K.B.1
Nyberg, E.2
-
18
-
-
0041083854
-
Inferring decision graphs using the minimum message length principle
-
Tasmania, Australia
-
Jonathan J. Oliver, David L. Dowe, and Chris S. Wallace. Inferring decision graphs using the minimum message length principle. In Proceedings of the fifth Australian Joint Conference on Artificial Intelligence, Tasmania, Australia, pages 361-367, 1992.
-
(1992)
Proceedings of the fifth Australian Joint Conference on Artificial Intelligence
, pp. 361-367
-
-
Oliver, J.J.1
Dowe, D.L.2
Wallace, C.S.3
-
21
-
-
0040731124
-
Causal inference in the presence of latent variables and selection bias
-
ed P. Besnard and S. Hanks, Morgan Kaufmann
-
Peter Spirtes, Christopher Meek, and Thomas Richardson. Causal inference in the presence of latent variables and selection bias. In Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence, ed P. Besnard and S. Hanks, pages 499-506. Morgan Kaufmann, 1995.
-
(1995)
Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence
, pp. 499-506
-
-
Spirtes, P.1
Meek, C.2
Richardson, T.3
-
22
-
-
0003614273
-
-
2nd edition, Springer, Verlag
-
Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and Search, 2nd edition, Springer, Verlag, 1993.
-
(1993)
Causation, Prediction, and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
23
-
-
58049210197
-
Bayesian nets are all there is to causal dependence
-
CSLI Lecture Notes, Springer
-
Wolfgang Spohn. Bayesian nets are all there is to causal dependence. In In Stochastic Causality, Maria Carla Galaviotti, Eds. CSLI Lecture Notes, Springer, 2001.
-
(2001)
In Stochastic Causality, Maria Carla Galaviotti, Eds
-
-
Spohn, W.1
-
24
-
-
0005586410
-
On non-graphical description of models of conditional independence structure
-
Louvain la Neuve, Belgium, January
-
Milan Studeny. On non-graphical description of models of conditional independence structure. In HSSS Workshop on Stochastic Systems for Individual Behaviours, Louvain la Neuve, Belgium, January 2001.
-
(2001)
HSSS Workshop on Stochastic Systems for Individual Behaviours
-
-
Studeny, M.1
-
25
-
-
0008564212
-
Learning Bayesian belief networks based on the MDL principle: An efficient algorithm using the branch and bound technique
-
Bally, Italy
-
Joe Suzuki. Learning Bayesian belief networks based on the MDL principle: An efficient algorithm using the branch and bound technique. In Proceedings of the International Conference on Machine Learning, Bally, Italy, 1996.
-
(1996)
Proceedings of the International Conference on Machine Learning
-
-
Suzuki, J.1
-
26
-
-
44349085881
-
Meaningful information
-
Prosenjit Bose and Pat Morin, editors, ISAAC, volume 2518 of, Springer
-
Paul M. B. Vitányi. Meaningful information. In Prosenjit Bose and Pat Morin, editors, ISAAC, volume 2518 of Lecture Notes in Computer Science, pages 588-599. Springer, 2002.
-
(2002)
Lecture Notes in Computer Science
, pp. 588-599
-
-
Vitányi, P.M.B.1
-
28
-
-
0141474824
-
Critical remarks on single link search in learning belief networks
-
UAI-96, San Francisco, CA, Morgan Kaufmann Publishers
-
Yang Xiang, S. K. Wong, and N. Cercone. Critical remarks on single link search in learning belief networks. In Proceedings of the 12th Annual Conference on Uncertainty in Artificial Intelligence (UAI-96), pages 564-571. San Francisco, CA, Morgan Kaufmann Publishers, 1996.
-
(1996)
Proceedings of the 12th Annual Conference on Uncertainty in Artificial Intelligence
, pp. 564-571
-
-
Xiang, Y.1
Wong, S.K.2
Cercone, N.3
|