메뉴 건너뛰기




Volumn , Issue , 2011, Pages

When are graphical causal models not good models?

Author keywords

Bayesian networks; Causal models; Kolmogorov complexity; Kolmogorov minimal sufficient statistic

Indexed keywords


EID: 84877745222     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1093/acprof:oso/9780199574131.003.0027     Document Type: Chapter
Times cited : (2)

References (28)
  • 2
    • 0039289571 scopus 로고    scopus 로고
    • What is wrong with Bayes nets?
    • Nancy Cartwright. What is wrong with Bayes nets? The Monist, pages 242-264, 2001.
    • (2001) The Monist , pp. 242-264
    • Cartwright, N.1
  • 3
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Gregory F. Cooper and Edward Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9: 309-347, 1992.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 5
    • 17044423540 scopus 로고    scopus 로고
    • Are there algorithms that discover causal structure?
    • David A. Freedman and Paul Humphreys. Are there algorithms that discover causal structure? Synthese, 121: 29-54, 1999.
    • (1999) Synthese , vol.121 , pp. 29-54
    • Freedman, D.A.1    Humphreys, P.2
  • 11
    • 0003846045 scopus 로고
    • Learning Bayesian networks: the combination of knowledge and statistical data
    • Technical Report MSR-TR-94-09, Microsoft Research
    • David Heckerman, Dan Geiger, and David Chickering. Learning Bayesian networks: the combination of knowledge and statistical data. Technical Report MSR-TR-94-09, Microsoft Research, 1994.
    • (1994)
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 14
    • 33751171513 scopus 로고    scopus 로고
    • The power of intervention
    • Kevin B. Korb and Erik Nyberg. The power of intervention. Minds and Machines, 16(3): 289-302, 2006.
    • (2006) Minds and Machines , vol.16 , Issue.3 , pp. 289-302
    • Korb, K.B.1    Nyberg, E.2
  • 23
    • 58049210197 scopus 로고    scopus 로고
    • Bayesian nets are all there is to causal dependence
    • CSLI Lecture Notes, Springer
    • Wolfgang Spohn. Bayesian nets are all there is to causal dependence. In In Stochastic Causality, Maria Carla Galaviotti, Eds. CSLI Lecture Notes, Springer, 2001.
    • (2001) In Stochastic Causality, Maria Carla Galaviotti, Eds
    • Spohn, W.1
  • 24
    • 0005586410 scopus 로고    scopus 로고
    • On non-graphical description of models of conditional independence structure
    • Louvain la Neuve, Belgium, January
    • Milan Studeny. On non-graphical description of models of conditional independence structure. In HSSS Workshop on Stochastic Systems for Individual Behaviours, Louvain la Neuve, Belgium, January 2001.
    • (2001) HSSS Workshop on Stochastic Systems for Individual Behaviours
    • Studeny, M.1
  • 25
    • 0008564212 scopus 로고    scopus 로고
    • Learning Bayesian belief networks based on the MDL principle: An efficient algorithm using the branch and bound technique
    • Bally, Italy
    • Joe Suzuki. Learning Bayesian belief networks based on the MDL principle: An efficient algorithm using the branch and bound technique. In Proceedings of the International Conference on Machine Learning, Bally, Italy, 1996.
    • (1996) Proceedings of the International Conference on Machine Learning
    • Suzuki, J.1
  • 26
    • 44349085881 scopus 로고    scopus 로고
    • Meaningful information
    • Prosenjit Bose and Pat Morin, editors, ISAAC, volume 2518 of, Springer
    • Paul M. B. Vitányi. Meaningful information. In Prosenjit Bose and Pat Morin, editors, ISAAC, volume 2518 of Lecture Notes in Computer Science, pages 588-599. Springer, 2002.
    • (2002) Lecture Notes in Computer Science , pp. 588-599
    • Vitányi, P.M.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.