-
1
-
-
79959626737
-
Commuting groups and the topos of triads
-
Agon C, Amiot E, Andreatta M,Assayag G, Bresson J, Mandereau J, editors Proceedings of the 3rd International Conference Mathematics and Computation in Music-MCM 2011 Springer
-
Fiore TM, Noll T. Commuting groups and the topos of triads. In:Agon C, Amiot E, Andreatta M,Assayag G, Bresson J, Mandereau J, editors. Proceedings of the 3rd International Conference Mathematics and Computation in Music-MCM 2011. Lecture Notes in Computer Science, Springer; 2011.
-
(2011)
Lecture Notes in Computer Science
-
-
Fiore, T.M.1
Noll, T.2
-
3
-
-
79959605502
-
The topos of triads
-
Graz: Karl-Franzens-Univ. Graz
-
Noll T. The topos of triads. In: Colloquium on mathematical music theory. Graz: Karl-Franzens-Univ. Graz; 2005. p. 103-135.
-
(2005)
Colloquium on Mathematical Music Theory
, pp. 103-135
-
-
Noll, T.1
-
5
-
-
67649941317
-
Transfer principles for generalized interval systems
-
Kolman O. Transfer principles for generalized interval systems. Perspect. New Music. 2004;42:150-190.
-
(2004)
Perspect. New Music
, vol.42
, pp. 150-190
-
-
Kolman, O.1
-
6
-
-
34047215108
-
Alternative interpretations of some measures from Parsifal
-
Clampitt D. Alternative interpretations of some measures from Parsifal. J. Music Theory. 1998;42:321-334.
-
(1998)
J. Music Theory
, vol.42
, pp. 321-334
-
-
Clampitt, D.1
-
7
-
-
0003649603
-
-
Berlin: Universitext Springer-Verlag Translated from the 1977 French original by M. Cole and S. Levy, Fourth printing of the 1987 English translation
-
Berger M. Geometry I. Berlin: Universitext Springer-Verlag; 2009. Translated from the 1977 French original by M. Cole and S. Levy, Fourth printing of the 1987 English translation.
-
(2009)
Geometry i
-
-
Berger, M.1
-
8
-
-
18144403772
-
Categories for the working mathematician. 2nd ed
-
NewYork: Springer-Verlag
-
Mac Lane S. Categories for the working mathematician. 2nd ed. Graduate Texts in Mathematics, Vol. 5. NewYork: Springer-Verlag; 1998.
-
(1998)
Graduate Texts in Mathematics
, vol.5
-
-
Mac Lane, S.1
-
9
-
-
85136676575
-
-
Basel: Birkhäuser Verlag Geometric logic of concepts, theory, and performance, In collaboration with Stefan Göller and Stefan Müller, With 1 CD-ROM (Windows, Macintosh and UNIX)
-
Mazzola G. The topos of music. Basel: Birkhäuser Verlag; 2002. Geometric logic of concepts, theory, and performance, In collaboration with Stefan Göller and Stefan Müller, With 1 CD-ROM (Windows, Macintosh and UNIX).
-
(2002)
The Topos of Music
-
-
Mazzola, G.1
-
11
-
-
84877754767
-
-
Berlin: Heldermann Verlag Entwurf einer mathematischen Musiktheorie [Sketch of a mathematical music theory]
-
Mazzola G. Gruppen und Kategorien in der Musik, Research and Exposition in Mathematics Vol. 10. Berlin: Heldermann Verlag; 1985. Entwurf einer mathematischen Musiktheorie [Sketch of a mathematical music theory].
-
(1985)
Gruppen und Kategorien in der Musik, Research and Exposition in Mathematics
, vol.10
-
-
Mazzola, G.1
-
12
-
-
33745922738
-
Uniform triadic transformations
-
Hook J. Uniform triadic transformations. J. Music Theory. 2002;46:57-126.
-
(2002)
J. Music Theory
, vol.46
, pp. 57-126
-
-
Hook, J.1
-
13
-
-
84877771307
-
Uniform triadic transformations and the twelve-tone music of Webern
-
Hook J, Douthett J. Uniform triadic transformations and the twelve-tone music of Webern. Perspect. New Music. 2008;46:91-151.
-
(2008)
Perspect. New Music
, vol.46
, pp. 91-151
-
-
Hook, J.1
Douthett, J.2
-
14
-
-
79955642746
-
Generalized commuting groups
-
Peck R. Generalized commuting groups. J. Music Theory. 2010;54:143-177.
-
(2010)
J. Music Theory
, vol.54
, pp. 143-177
-
-
Peck, R.1
-
15
-
-
84884476248
-
Incorporating voice permutations into the theory of neo-Riemannian groups and Lewinian duality
-
Proceedings of MCM 2013, Mathematics and Computation in Music Available from
-
Fiore TM, Noll T, Satyendra R. Incorporating voice permutations into the theory of neo-Riemannian groups and Lewinian duality. In: Proceedings of MCM 2013, Mathematics and Computation in Music, Lecture Notes in Computer Science. Available from: http://arxiv.org/abs/1301.4136.
-
Lecture Notes in Computer Science
-
-
Fiore, T.M.1
Noll, T.2
Satyendra, R.3
-
17
-
-
33745931702
-
Neo-Riemannian operations, parsimonious trichords, and their 'Tonnetz' representations
-
Cohn R. Neo-Riemannian operations, parsimonious trichords, and their 'Tonnetz' representations. J. Music Theory. 1997;41:1-66.
-
(1997)
J. Music Theory
, vol.41
, pp. 1-66
-
-
Cohn, R.1
-
18
-
-
84877780534
-
Flip-flop circles and their groups
-
Douthett J, Hyde MM, and Smith CJ, editors Rochester, NY: University of Rochester Press; Eastman Studies in Music
-
Clough J. Flip-flop circles and their groups. In: Douthett J, Hyde MM, and Smith CJ, editors. Music theory and mathematics: chords, collections, and transformations. Rochester, NY: University of Rochester Press; Eastman Studies in Music 2008.
-
(2008)
Music Theory and Mathematics: Chords, Collections, and Transformations
-
-
Clough, J.1
-
19
-
-
60949514414
-
Moving beyond neo-Riemannian triads: Exploring a transformational model for seventh chords
-
Childs A. Moving beyond neo-Riemannian triads: exploring a transformational model for seventh chords. J. Music Theory. 1998;42:191-193.
-
(1998)
J. Music Theory
, vol.42
, pp. 191-193
-
-
Childs, A.1
-
20
-
-
61449161661
-
Some aspects of three-dimensional Tonnetze
-
Gollin E. Some aspects of three-dimensional Tonnetze. J. Music Theory. 1998;42:195-206.
-
(1998)
J. Music Theory
, vol.42
, pp. 195-206
-
-
Gollin, E.1
-
21
-
-
61249746770
-
Some structural features of contextually-defined inversion operators
-
Kochavi J. Some structural features of contextually-defined inversion operators. J. Music Theory. 1998;42:307-320.
-
(1998)
J. Music Theory
, vol.42
, pp. 307-320
-
-
Kochavi, J.1
-
22
-
-
80053599760
-
Generalized tonnetze
-
Catanzaro M. Generalized Tonnetze. J. Math. Music. 2011;5:117-139.
-
(2011)
J. Math. Music
, vol.5
, pp. 117-139
-
-
Catanzaro, M.1
|