메뉴 건너뛰기




Volumn 332, Issue 16, 2013, Pages 3636-3653

Identification of member connectivity and mass changes on a two-storey framed structure using frequency response functions and artificial neural networks

Author keywords

[No Author keywords available]

Indexed keywords

DAMAGE INVESTIGATION; FREQUENCY-RESPONSE FUNCTIONS; HIERARCHICAL NETWORK; MEASUREMENT LOCATIONS; NEURAL NETWORK TRAINING; STRUCTURAL CONDITION; STRUCTURAL HEALTH MONITORING (SHM); WHITE GAUSSIAN NOISE;

EID: 84877695157     PISSN: 0022460X     EISSN: 10958568     Source Type: Journal    
DOI: 10.1016/j.jsv.2013.02.018     Document Type: Article
Times cited : (49)

References (36)
  • 6
    • 25644441848 scopus 로고    scopus 로고
    • Damage location vector: A non-destructive structural damage detection technique
    • D. Huynh, J. He, and D. Tran Damage location vector: a non-destructive structural damage detection technique Computers and Structures 83 28-30 2005 2353 2367
    • (2005) Computers and Structures , vol.83 , Issue.2830 , pp. 2353-2367
    • Huynh, D.1    He, J.2    Tran, D.3
  • 7
    • 0000328088 scopus 로고    scopus 로고
    • Damage detection using the frequency-response-function curvature method
    • R.P.C. Sampaio, N.M.M. Maia, and J.M.M. Silva Damage detection using the frequency-response-function curvature method Journal of Sound and Vibration 226 5 1999 1029 1042
    • (1999) Journal of Sound and Vibration , vol.226 , Issue.5 , pp. 1029-1042
    • Sampaio, R.P.C.1    Maia, N.M.M.2    Silva, J.M.M.3
  • 10
    • 0036143988 scopus 로고    scopus 로고
    • A frequency response function-based structural damage identification method
    • U. Lee, and J. Shin A frequency response function-based structural damage identification method Computers & Structures 80 2 2002 117 132
    • (2002) Computers & Structures , vol.80 , Issue.2 , pp. 117-132
    • Lee, U.1    Shin, J.2
  • 11
    • 0036723523 scopus 로고    scopus 로고
    • A structural damage identification method for plate structures
    • U. Lee, and J. Shin A structural damage identification method for plate structures Engineering Structures 24 9 2002 1177 1188
    • (2002) Engineering Structures , vol.24 , Issue.9 , pp. 1177-1188
    • Lee, U.1    Shin, J.2
  • 13
    • 0026822025 scopus 로고
    • Use of neural networks in detection of structural damage
    • X. Wu, J. Ghaboussi, and J.H. Garrett Use of neural networks in detection of structural damage Computers & Structures 42 4 1992 649 659
    • (1992) Computers & Structures , vol.42 , Issue.4 , pp. 649-659
    • Wu, X.1    Ghaboussi, J.2    Garrett, J.H.3
  • 15
    • 0035902057 scopus 로고    scopus 로고
    • Structural damage detection using artificial neural networks and measured FRF data reduced via principal component projection
    • C. Zang, and M. Imregun Structural damage detection using artificial neural networks and measured FRF data reduced via principal component projection Journal of Sound and Vibration 242 5 2001 813 827
    • (2001) Journal of Sound and Vibration , vol.242 , Issue.5 , pp. 813-827
    • Zang, C.1    Imregun, M.2
  • 16
    • 29144497217 scopus 로고    scopus 로고
    • Experimental investigation of seismic damage identification using PCA-compressed frequency response functions and neural networks
    • Y.Q. Ni, X.T. Zhou, and J.M. Ko Experimental investigation of seismic damage identification using PCA-compressed frequency response functions and neural networks Journal of Sound and Vibration 290 1-2 2006 242 263
    • (2006) Journal of Sound and Vibration , vol.290 , Issue.12 , pp. 242-263
    • Ni, Y.Q.1    Zhou, X.T.2    Ko, J.M.3
  • 19
    • 0033131657 scopus 로고    scopus 로고
    • Fault identification using finite element models and neural networks
    • T. Marwala, and H.E.M. Hunt Fault identification using finite element models and neural networks Mechanical Systems and Signal Processing 13 1999 475 490
    • (1999) Mechanical Systems and Signal Processing , vol.13 , pp. 475-490
    • Marwala, T.1    Hunt, H.E.M.2
  • 20
    • 0033717908 scopus 로고    scopus 로고
    • Damage identification using committee of neural networks
    • T. Marwala Damage identification using committee of neural networks Journal of Engineering Mechanics 126 1 2000 43 50
    • (2000) Journal of Engineering Mechanics , vol.126 , Issue.1 , pp. 43-50
    • Marwala, T.1
  • 21
    • 78650375456 scopus 로고    scopus 로고
    • Dynamic-based damage identification using neural network ensembles and damage index method
    • U. Dackermann, J. Li, and B. Samali Dynamic-based damage identification using neural network ensembles and damage index method Advances in Structural Engineering 13 6 2010 1001 1016
    • (2010) Advances in Structural Engineering , vol.13 , Issue.6 , pp. 1001-1016
    • Dackermann, U.1    Li, J.2    Samali, B.3
  • 22
    • 0036646282 scopus 로고    scopus 로고
    • The location of a concentrated mass on rectangular plates from measurements of natural vibrations
    • W. Ostachowicz, M. Krawczuk, and M. Cartmell The location of a concentrated mass on rectangular plates from measurements of natural vibrations Computers and Structures 80 16-17 2002 1419 1428
    • (2002) Computers and Structures , vol.80 , Issue.1617 , pp. 1419-1428
    • Ostachowicz, W.1    Krawczuk, M.2    Cartmell, M.3
  • 23
    • 4444347177 scopus 로고    scopus 로고
    • Experimentally validated added mass identification algorithm based on frequency response functions
    • P.J. Fanning, and E.P. Carden Experimentally validated added mass identification algorithm based on frequency response functions Journal of Engineering Mechanics 130 9 2004 1045 1051
    • (2004) Journal of Engineering Mechanics , vol.130 , Issue.9 , pp. 1045-1051
    • Fanning, P.J.1    Carden, E.P.2
  • 24
    • 0031145665 scopus 로고    scopus 로고
    • Time domain analysis for damage detection in smart structures
    • J. Cattarius, and D.J. Inman Time domain analysis for damage detection in smart structures Mechanical Systems and Signal Processing 11 3 1997 409 423
    • (1997) Mechanical Systems and Signal Processing , vol.11 , Issue.3 , pp. 409-423
    • Cattarius, J.1    Inman, D.J.2
  • 26
    • 79952542622 scopus 로고    scopus 로고
    • Damage identification in civil engineering structures utilising PCA-compressed residual frequency response functions and neural network ensembles
    • J. Li, U. Dackermann, Y.-L. Xu, and B. Samali Damage identification in civil engineering structures utilising PCA-compressed residual frequency response functions and neural network ensembles Structural Control & Health Monitoring 18 2 2011 207 226
    • (2011) Structural Control & Health Monitoring , vol.18 , Issue.2 , pp. 207-226
    • Li, J.1    Dackermann, U.2    Xu, Y.-L.3    Samali, B.4
  • 27
    • 84863433929 scopus 로고    scopus 로고
    • Location and severity identification of notch-type damage in a two-storey framed structure utilising frequency response functions and artificial neural networks
    • B. Samali, U. Dackermann, and J. Li Location and severity identification of notch-type damage in a two-storey framed structure utilising frequency response functions and artificial neural networks Advances in Structural Engineering 15 5 2012 743 757
    • (2012) Advances in Structural Engineering , vol.15 , Issue.5 , pp. 743-757
    • Samali, B.1    Dackermann, U.2    Li, J.3
  • 28
    • 84877714147 scopus 로고    scopus 로고
    • CADA-X. Modal analysis manual, LMS International, Leuven, Belgium, 1996.
    • CADA-X. Modal analysis manual, LMS International, Leuven, Belgium, 1996.
  • 29
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • K. Pearson On lines and planes of closest fit to systems of points in space Philosophical Magazine 2 6 1901 559 572
    • (1901) Philosophical Magazine , vol.2 , Issue.6 , pp. 559-572
    • Pearson, K.1
  • 30
    • 29344438823 scopus 로고    scopus 로고
    • Analysis of the maximum likelihood, total least squares and principal component approaches for frequency response function estimation
    • P.R. White, M.H. Tan, and J.K. Hammond Analysis of the maximum likelihood, total least squares and principal component approaches for frequency response function estimation Journal of Sound and Vibration 290 3-5 2006 676 689
    • (2006) Journal of Sound and Vibration , vol.290 , Issue.35 , pp. 676-689
    • White, P.R.1    Tan, M.H.2    Hammond, J.K.3
  • 31
    • 0001044176 scopus 로고
    • Neural networks and their applications
    • C.M. Bishop Neural networks and their applications Review of Scientific Instruments 65 6 1994 1803 1832
    • (1994) Review of Scientific Instruments , vol.65 , Issue.6 , pp. 1803-1832
    • Bishop, C.M.1
  • 33
    • 0032095527 scopus 로고    scopus 로고
    • Making use of population information in evolutionary artificial neural networks
    • Y. Xin, and L. Yong Making use of population information in evolutionary artificial neural networks IEEE Transactions on Systems, Man, and Cybernetics, Part B 28 3 1998 417 425
    • (1998) IEEE Transactions on Systems, Man, and Cybernetics, Part B , vol.28 , Issue.3 , pp. 417-425
    • Xin, Y.1    Yong, L.2
  • 34
    • 85127438349 scopus 로고    scopus 로고
    • Learning with ensembles: How overfitting can be useful
    • D. Touretzky, M. Mozer, M. Hasselmo, MIT Press Denver
    • P. Sollich, and A. Krogh Learning with ensembles: how overfitting can be useful D. Touretzky, M. Mozer, M. Hasselmo, Advances in Neural Information Processing Systems 8 1996 MIT Press Denver 190 196
    • (1996) Advances in Neural Information Processing Systems 8 , pp. 190-196
    • Sollich, P.1    Krogh, A.2
  • 35
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Z.-H. Zhou, J. Wu, and W. Tang Ensembling neural networks: many could be better than all Artificial Intelligence 137 1-2 2002 239 263
    • (2002) Artificial Intelligence , vol.137 , Issue.12 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3
  • 36
    • 84877698360 scopus 로고    scopus 로고
    • Alyuda Research Inc, Alyuda NeuroIntelligence Help Manual version 2.2, 2006.
    • Alyuda Research Inc, Alyuda NeuroIntelligence Help Manual version 2.2, 2006.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.