메뉴 건너뛰기




Volumn 6, Issue 4, 2013, Pages 4268-4272

Achieving privacy in data mining using normalization

Author keywords

Accuracy; Clustering; K means; Min max normalization; Privacy

Indexed keywords


EID: 84877680134     PISSN: 09746846     EISSN: 09745645     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (26)

References (8)
  • 1
    • 54449090880 scopus 로고    scopus 로고
    • An effective data transformation approach for privacy preserving clustering
    • Rajalaxmi R R, and Natarajan A M (2008). An effective data transformation approach for privacy preserving clustering, Journal of Computer Science, vol 4(4), 320-326.
    • (2008) Journal of Computer Science , vol.4 , Issue.4 , pp. 320-326
    • Rajalaxmi, R.R.1    Natarajan, A.M.2
  • 4
    • 84863992381 scopus 로고    scopus 로고
    • Using noise addition method based on pre-mining to protect health care privacy
    • Liu L, Yang K et al. (2012). Using noise addition method based on pre-mining to protect health care privacy, Journal of Control Engineering and Applied Informatics, vol 14(2), 58-64.
    • (2012) Journal of Control Engineering and Applied Informatics , vol.14 , Issue.2 , pp. 58-64
    • Liu, L.1    Yang, K.2
  • 6
    • 81855183816 scopus 로고    scopus 로고
    • Privacy preserving distributed data mining using randomized site selection
    • Rajalakshmi M, and Purusothaman T (2011). Privacy preserving distributed data mining using randomized site selection, European Journal Of Scientific Research, vol 64(2), 610-624.
    • (2011) European Journal Of Scientific Research , vol.64 , Issue.2 , pp. 610-624
    • Rajalakshmi, M.1    Purusothaman, T.2
  • 8
    • 84877677300 scopus 로고    scopus 로고
    • UCI Data Repository
    • Available from http://archive.ics.uci.edu/ml/datasets.html UCI Data Repository.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.