메뉴 건너뛰기




Volumn 7, Issue 2, 2013, Pages

Review article: Fabrication of nanofluidic devices

Author keywords

[No Author keywords available]

Indexed keywords

ELECTROMECHANICAL DEVICES; FABRICATION; FLOW OF FLUIDS; MEMS; NANOTECHNOLOGY;

EID: 84877656780     PISSN: 19321058     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.4794973     Document Type: Article
Times cited : (226)

References (321)
  • 1
    • 22344445940 scopus 로고    scopus 로고
    • Nanofluidics: What is it and what can we expect from it
    • 10.1007/s10404-004-0012-9
    • Eijkel J.C. T. v. d. Berg A. Nanofluidics: What is it and what can we expect from it. Microfluid. Nanofluid. 2005, 1(3):249-267. 10.1007/s10404-004-0012-9, and "?".
    • (2005) Microfluid. Nanofluid. , vol.1 , Issue.3 , pp. 249-267
    • Eijkel, J.C.T.1    V D Berg, A.2
  • 2
    • 70350725986 scopus 로고    scopus 로고
    • Principles and applications of nanofluidic transport
    • 10.1038/nnano.2009.332
    • Sparreboom W. van den Berg A. Eijkel J.C. Principles and applications of nanofluidic transport. Nat. Nanotechnol. 2009, 4(11):713-720. 10.1038/nnano.2009.332
    • (2009) Nat. Nanotechnol. , vol.4 , Issue.11 , pp. 713-720
    • Sparreboom, W.1    van den Berg, A.2    Eijkel, J.C.3
  • 3
    • 0344688277 scopus 로고    scopus 로고
    • Capillarity induced negative pressure of water plugs in nanochannels
    • 10.1021/nl034676e
    • Tas N.R. Mela P. Kramer T. Berenschot J.W. van den Berg A. Capillarity induced negative pressure of water plugs in nanochannels. Nano Lett. 2003, 3(11):1537-1540. 10.1021/nl034676e
    • (2003) Nano Lett. , vol.3 , Issue.11 , pp. 1537-1540
    • Tas, N.R.1    Mela, P.2    Kramer, T.3    Berenschot, J.W.4    van den Berg, A.5
  • 4
    • 84857982307 scopus 로고    scopus 로고
    • Evaporation-induced cavitation in nanofluidic channels
    • 10.1073/pnas.1014075109
    • Duan C. Karnik R. Lu M.C. Majumdar A. Evaporation-induced cavitation in nanofluidic channels. Proc. Natl. Acad. Sci. U.S.A. 2012, 109(10):3683-3693. 10.1073/pnas.1014075109
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , Issue.10 , pp. 3683-3693
    • Duan, C.1    Karnik, R.2    Lu, M.C.3    Majumdar, A.4
  • 5
    • 33748303033 scopus 로고    scopus 로고
    • Diffusion-limited patterning of molecules in nanofluidic channels
    • 10.1021/nl061159y
    • Karnik R. Castelino K. Duan C.H. Majumdar A. Diffusion-limited patterning of molecules in nanofluidic channels. Nano Lett. 2006, 6(8):1735-1740. 10.1021/nl061159y
    • (2006) Nano Lett. , vol.6 , Issue.8 , pp. 1735-1740
    • Karnik, R.1    Castelino, K.2    Duan, C.H.3    Majumdar, A.4
  • 6
    • 64149127235 scopus 로고    scopus 로고
    • Understanding electrokinetics at the nanoscale: A perspective
    • 10.1063/1.3056045
    • Chang H.C. Yossifon G. Understanding electrokinetics at the nanoscale: A perspective. Biomicrofluidics 2009, 3(1):012001. 10.1063/1.3056045
    • (2009) Biomicrofluidics , vol.3 , Issue.1 , pp. 012001
    • Chang, H.C.1    Yossifon, G.2
  • 7
    • 4344568092 scopus 로고    scopus 로고
    • Surface-charge-governed ion transport in nanofluidic channels
    • 10.1103/PhysRevLett.93.035901
    • Stein D. Kruithof M. Dekker C. Surface-charge-governed ion transport in nanofluidic channels. Phys. Rev. Lett. 2004, 93(3):035901. 10.1103/PhysRevLett.93.035901
    • (2004) Phys. Rev. Lett. , vol.93 , Issue.3 , pp. 035901
    • Stein, D.1    Kruithof, M.2    Dekker, C.3
  • 9
    • 41849096397 scopus 로고    scopus 로고
    • Nanofluidic devices and their applications
    • 10.1021/ac702296u
    • Abgrall P. Nguyen N.T. Nanofluidic devices and their applications. Anal. Chem. 2008, 80(7):2326-2341. 10.1021/ac702296u
    • (2008) Anal. Chem. , vol.80 , Issue.7 , pp. 2326-2341
    • Abgrall, P.1    Nguyen, N.T.2
  • 10
    • 49449090221 scopus 로고    scopus 로고
    • Transport phenomena in nanofluidics
    • 10.1103/RevModPhys.80.839
    • Schoch R. Han J. Renaud P. Transport phenomena in nanofluidics. Rev. Mod. Phys. 2008, 80(3):839-883. 10.1103/RevModPhys.80.839
    • (2008) Rev. Mod. Phys. , vol.80 , Issue.3 , pp. 839-883
    • Schoch, R.1    Han, J.2    Renaud, P.3
  • 11
    • 84866413854 scopus 로고    scopus 로고
    • Fabrication of nanofluidic biochips with nanochannels for applications in DNA analysis
    • 10.1002/smll.201200240
    • Xia D. Yan J. Hou S. Fabrication of nanofluidic biochips with nanochannels for applications in DNA analysis. Small 2012, 8(18):2787-2801. 10.1002/smll.201200240
    • (2012) Small , vol.8 , Issue.18 , pp. 2787-2801
    • Xia, D.1    Yan, J.2    Hou, S.3
  • 12
    • 10844293666 scopus 로고    scopus 로고
    • Electrochemomechanical energy conversion in nanofluidic channels
    • 10.1021/nl0489945
    • Daiguji H. Yang P. Szeri A.J. Majumdar A. Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett. 2004, 4(12):2315-2321. 10.1021/nl0489945
    • (2004) Nano Lett. , vol.4 , Issue.12 , pp. 2315-2321
    • Daiguji, H.1    Yang, P.2    Szeri, A.J.3    Majumdar, A.4
  • 13
    • 78649753947 scopus 로고    scopus 로고
    • Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels
    • 10.1007/s10404-010-0641-0
    • Kim D.-K. Duan C. Chen Y.-F. Majumdar A. Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels. Microfluid. Nanofluid. 2010, 9(6):1215-1224. 10.1007/s10404-010-0641-0
    • (2010) Microfluid. Nanofluid. , vol.9 , Issue.6 , pp. 1215-1224
    • Kim, D.-K.1    Duan, C.2    Chen, Y.-F.3    Majumdar, A.4
  • 15
    • 77950809846 scopus 로고    scopus 로고
    • Direct seawater desalination by ion concentration polarization
    • 10.1038/nnano.2010.34
    • Kim S.J. Ko S.H. Kang K.H. Han J. Direct seawater desalination by ion concentration polarization. Nat. Nanotechnol. 2010, 5(4):297-301. 10.1038/nnano.2010.34
    • (2010) Nat. Nanotechnol. , vol.5 , Issue.4 , pp. 297-301
    • Kim, S.J.1    Ko, S.H.2    Kang, K.H.3    Han, J.4
  • 19
    • 18044384992 scopus 로고    scopus 로고
    • New approaches to nanofabrication: Molding, printing, and other techniques
    • 10.1021/cr030076o
    • Gates B.D. Xu Q. Stewart M. Ryan D. Willson C.G. Whitesides G.M. New approaches to nanofabrication: Molding, printing, and other techniques. Chem. Rev. 2005, 105(4):1171-1196. 10.1021/cr030076o
    • (2005) Chem. Rev. , vol.105 , Issue.4 , pp. 1171-1196
    • Gates, B.D.1    Xu, Q.2    Stewart, M.3    Ryan, D.4    Willson, C.G.5    Whitesides, G.M.6
  • 20
    • 33645809573 scopus 로고    scopus 로고
    • Review of fabrication of nanochannels for single phase liquid flow
    • 10.1007/s10404-005-0068-1
    • Perry J.L. Kandlikar S.G. Review of fabrication of nanochannels for single phase liquid flow. Microfluid. Nanofluid. 2005, 2(3):185-193. 10.1007/s10404-005-0068-1
    • (2005) Microfluid. Nanofluid. , vol.2 , Issue.3 , pp. 185-193
    • Perry, J.L.1    Kandlikar, S.G.2
  • 21
    • 18744363890 scopus 로고    scopus 로고
    • Technologies for nanofluidic systems: Top-down vs. bottom-up-a review
    • 10.1039/b416951d
    • Mijatovic D. Eijkel J.C. van den Berg A. Technologies for nanofluidic systems: Top-down vs. bottom-up-a review. Lab Chip 2005, 5(5):492-500. 10.1039/b416951d
    • (2005) Lab Chip , vol.5 , Issue.5 , pp. 492-500
    • Mijatovic, D.1    Eijkel, J.C.2    van den Berg, A.3
  • 22
    • 34248351114 scopus 로고    scopus 로고
    • Solid-state nanopores
    • 10.1038/nnano.2007.27
    • Dekker C. Solid-state nanopores. Nat. Nanotechnol. 2007, 2(4):209-215. 10.1038/nnano.2007.27
    • (2007) Nat. Nanotechnol. , vol.2 , Issue.4 , pp. 209-215
    • Dekker, C.1
  • 24
    • 0035144402 scopus 로고    scopus 로고
    • Nanofabrication: Concentional and nonconventional methods
    • 10.1002/1522-2683(200101)22:2<187::AID-ELPS187>3.0.CO;2-0
    • Chen Y. Pepin A. Nanofabrication: Concentional and nonconventional methods. Electrophoresis 2001, 22:187-207. 10.1002/1522-2683(200101)22:2<187::AID-ELPS187>3.0.CO;2-0
    • (2001) Electrophoresis , vol.22 , pp. 187-207
    • Chen, Y.1    Pepin, A.2
  • 25
    • 77955526390 scopus 로고    scopus 로고
    • Ion transport in nanofluidic funnels
    • 10.1021/nn100692z
    • Perry J.M. Zhou K. Harms Z.D. Jacobson S.C. Ion transport in nanofluidic funnels. ACS Nano 2010, 4(7):3897-3902. 10.1021/nn100692z
    • (2010) ACS Nano , vol.4 , Issue.7 , pp. 3897-3902
    • Perry, J.M.1    Zhou, K.2    Harms, Z.D.3    Jacobson, S.C.4
  • 26
    • 78650370305 scopus 로고    scopus 로고
    • Simple fabrication of hydrophilic nanochannels using the chemical bonding between activated ultrathin PDMS layer and cover glass by oxygen plasma
    • 10.1039/c0lc00015a
    • Kim S.H. Cui Y. Lee M.J. Nam S.W. Oh D. Kang S.H. Kim Y.S. Park S. Simple fabrication of hydrophilic nanochannels using the chemical bonding between activated ultrathin PDMS layer and cover glass by oxygen plasma. Lab Chip 2011, 11(2):348-353. 10.1039/c0lc00015a
    • (2011) Lab Chip , vol.11 , Issue.2 , pp. 348-353
    • Kim, S.H.1    Cui, Y.2    Lee, M.J.3    Nam, S.W.4    Oh, D.5    Kang, S.H.6    Kim, Y.S.7    Park, S.8
  • 27
    • 29144511554 scopus 로고    scopus 로고
    • Unidirectional transport of a bead on a single microtubule immobilized in a submicrometre channel
    • 10.1088/0957-4484/17/1/049
    • Yokokawa R. Yoshida Y. Takeuchi S. Kon T. Fujita H. Unidirectional transport of a bead on a single microtubule immobilized in a submicrometre channel. Nanotechnology 2006, 17(1):289-294. 10.1088/0957-4484/17/1/049
    • (2006) Nanotechnology , vol.17 , Issue.1 , pp. 289-294
    • Yokokawa, R.1    Yoshida, Y.2    Takeuchi, S.3    Kon, T.4    Fujita, H.5
  • 28
    • 0037115606 scopus 로고    scopus 로고
    • Nanochannels on a fused-silica microchip and liquid properties investigation by time-resolved fluorescence measurements
    • 10.1021/ac025808b
    • Hibara A. Saito T. Kim H.B. Tokeshi M. Ooi T. Nakao M. Kitamori T. Nanochannels on a fused-silica microchip and liquid properties investigation by time-resolved fluorescence measurements. Anal. Chem. 2002, 74(24):6170-6176. 10.1021/ac025808b
    • (2002) Anal. Chem. , vol.74 , Issue.24 , pp. 6170-6176
    • Hibara, A.1    Saito, T.2    Kim, H.B.3    Tokeshi, M.4    Ooi, T.5    Nakao, M.6    Kitamori, T.7
  • 29
    • 68149166295 scopus 로고    scopus 로고
    • NMR studies of structure and dynamics of liquid molecules confined in extended nanospaces
    • 10.1021/jp903275t
    • Tsukahara T. Mizutani W. Mawatari K. Kitamori T. NMR studies of structure and dynamics of liquid molecules confined in extended nanospaces. J. Phys. Chem. B 2009, 113(31):10808-10816. 10.1021/jp903275t
    • (2009) J. Phys. Chem. B , vol.113 , Issue.31 , pp. 10808-10816
    • Tsukahara, T.1    Mizutani, W.2    Mawatari, K.3    Kitamori, T.4
  • 30
    • 33751529738 scopus 로고    scopus 로고
    • Pressure-driven flow control system for nanofluidic chemical process
    • 10.1016/j.chroma.2006.10.097
    • Tamaki E. Hibara A. Kim H.B. Tokeshi M. Kitamori T. Pressure-driven flow control system for nanofluidic chemical process. J. Chromatogr. A 2006, 1137(2):256-262. 10.1016/j.chroma.2006.10.097
    • (2006) J. Chromatogr. A , vol.1137 , Issue.2 , pp. 256-262
    • Tamaki, E.1    Hibara, A.2    Kim, H.B.3    Tokeshi, M.4    Kitamori, T.5
  • 32
    • 58149277694 scopus 로고    scopus 로고
    • Entropic unfolding of DNA molecules in nanofluidic channels
    • 10.1021/nl802256s
    • Levy S.L. Mannion J.T. Cheng J. Reccius C.H. Craighead H.G. Entropic unfolding of DNA molecules in nanofluidic channels. Nano Lett. 2008, 8(11):3839-3844. 10.1021/nl802256s
    • (2008) Nano Lett. , vol.8 , Issue.11 , pp. 3839-3844
    • Levy, S.L.1    Mannion, J.T.2    Cheng, J.3    Reccius, C.H.4    Craighead, H.G.5
  • 33
    • 33749650219 scopus 로고    scopus 로고
    • A nanofluidic railroad switch for DNA
    • 10.1021/nl061137b
    • Riehn R. Austin R.H. Sturm J.C. A nanofluidic railroad switch for DNA. Nano Lett. 2006, 6(9):1973-1976. 10.1021/nl061137b
    • (2006) Nano Lett. , vol.6 , Issue.9 , pp. 1973-1976
    • Riehn, R.1    Austin, R.H.2    Sturm, J.C.3
  • 34
    • 34547690725 scopus 로고    scopus 로고
    • Nanoconfinement-enhanced conformational response of single DNA molecules to changes in ionic environment
    • 10.1103/PhysRevLett.99.058302
    • Reisner W. Beech J. Larsen N. Flyvbjerg H. Kristensen A. Tegenfeldt J. Nanoconfinement-enhanced conformational response of single DNA molecules to changes in ionic environment. Phys. Rev. Lett. 2007, 99(5):058302. 10.1103/PhysRevLett.99.058302
    • (2007) Phys. Rev. Lett. , vol.99 , Issue.5 , pp. 058302
    • Reisner, W.1    Beech, J.2    Larsen, N.3    Flyvbjerg, H.4    Kristensen, A.5    Tegenfeldt, J.6
  • 35
    • 79957797025 scopus 로고    scopus 로고
    • Sub-10-nm nanochannels by self-sealing and self-limiting atomic layer deposition
    • 10.1021/nl100999e
    • Nam S.W. Lee M.H. Lee S.H. Lee D.J. Rossnagel S.M. Kim K.B. Sub-10-nm nanochannels by self-sealing and self-limiting atomic layer deposition. Nano Lett. 2010, 10(9):3324-3329. 10.1021/nl100999e
    • (2010) Nano Lett. , vol.10 , Issue.9 , pp. 3324-3329
    • Nam, S.W.1    Lee, M.H.2    Lee, S.H.3    Lee, D.J.4    Rossnagel, S.M.5    Kim, K.B.6
  • 36
    • 78650123788 scopus 로고    scopus 로고
    • Nanofluidic channels fabricated by e-beam lithography and polymer reflow sealing
    • 10.1116/1.3517620
    • Fouad M. Yavuz M. Cui B. Nanofluidic channels fabricated by e-beam lithography and polymer reflow sealing. J. Vac. Sci. Technol. B 2010, 28(6):C6I11-C6I13. 10.1116/1.3517620
    • (2010) J. Vac. Sci. Technol. B , vol.28 , Issue.6
    • Fouad, M.1    Yavuz, M.2    Cui, B.3
  • 37
    • 77951000462 scopus 로고    scopus 로고
    • Complementary metal oxide semiconductor compatible fabrication and characterization of parylene-C covered nanofluidic channels with integrated nanoelectrodes
    • 10.1063/1.3212074
    • Tung C.K. Riehn R. Austin R.H. Complementary metal oxide semiconductor compatible fabrication and characterization of parylene-C covered nanofluidic channels with integrated nanoelectrodes. Biomicrofluidics 2009, 3(3):031101. 10.1063/1.3212074
    • (2009) Biomicrofluidics , vol.3 , Issue.3 , pp. 031101
    • Tung, C.K.1    Riehn, R.2    Austin, R.H.3
  • 38
    • 33644922253 scopus 로고    scopus 로고
    • Recent developments in nanofabrication using focused ion beams
    • 10.1002/smll.200500113
    • Tseng A.A. Recent developments in nanofabrication using focused ion beams. Small 2005, 1(10):924-939. 10.1002/smll.200500113
    • (2005) Small , vol.1 , Issue.10 , pp. 924-939
    • Tseng, A.A.1
  • 39
    • 2342636455 scopus 로고    scopus 로고
    • Recent developments in micromilling using focused ion beam technology
    • 10.1088/0960-1317/14/4/R01
    • Tseng A.A. Recent developments in micromilling using focused ion beam technology. J. Micromech. Microeng. 2004, 14(4):R15-R34. 10.1088/0960-1317/14/4/R01
    • (2004) J. Micromech. Microeng. , vol.14 , Issue.4
    • Tseng, A.A.1
  • 40
    • 9644273841 scopus 로고    scopus 로고
    • Probing single DNA molecule transport using fabricated nanopores
    • 10.1021/nl048654j
    • Chen P. Gu J.J. Brandin E. Kim Y.R. Wang Q. Branton D. Probing single DNA molecule transport using fabricated nanopores. Nano Lett. 2004, 4(11):2293-2298. 10.1021/nl048654j
    • (2004) Nano Lett. , vol.4 , Issue.11 , pp. 2293-2298
    • Chen, P.1    Gu, J.J.2    Brandin, E.3    Kim, Y.R.4    Wang, Q.5    Branton, D.6
  • 41
    • 33845985288 scopus 로고    scopus 로고
    • Fabrication and functionalization of nanochannels by electron-beam-induced silicon oxide deposition
    • 10.1021/la061321c
    • Danelon C. Santschi C. Brugger J. Vogel H. Fabrication and functionalization of nanochannels by electron-beam-induced silicon oxide deposition. Langmuir 2006, 22(25):10711-10715. 10.1021/la061321c
    • (2006) Langmuir , vol.22 , Issue.25 , pp. 10711-10715
    • Danelon, C.1    Santschi, C.2    Brugger, J.3    Vogel, H.4
  • 44
    • 77958578769 scopus 로고    scopus 로고
    • Unique nanopore pattern formation by focused ion beam guided anodization
    • 10.1088/0957-4484/21/40/405301
    • Tian Z.P. Lu K. Chen B. Unique nanopore pattern formation by focused ion beam guided anodization. Nanotechnology 2010, 21(40):405301. 10.1088/0957-4484/21/40/405301
    • (2010) Nanotechnology , vol.21 , Issue.40 , pp. 405301
    • Tian, Z.P.1    Lu, K.2    Chen, B.3
  • 45
    • 4444245707 scopus 로고    scopus 로고
    • Fabrication of single nanofluidic channels in poly(methylmethacrylate) films via focused-ion beam milling for use as molecular gates
    • 10.1063/1.1780605
    • Cannon D.M. Flachsbart B.R. Shannon M.A. Sweedler J.V. Bohn P.W. Fabrication of single nanofluidic channels in poly(methylmethacrylate) films via focused-ion beam milling for use as molecular gates. Appl. Phys. Lett. 2004, 85(7):1241-1243. 10.1063/1.1780605
    • (2004) Appl. Phys. Lett. , vol.85 , Issue.7 , pp. 1241-1243
    • Cannon, D.M.1    Flachsbart, B.R.2    Shannon, M.A.3    Sweedler, J.V.4    Bohn, P.W.5
  • 46
    • 1642341810 scopus 로고    scopus 로고
    • Milling of submicron channels on gold layer using double charged arsenic ion beam
    • 10.1116/1.1640396
    • Tseng A.A. Insua I.A. Park J.S. Li B. Vakanas G.P. Milling of submicron channels on gold layer using double charged arsenic ion beam. J. Vac. Sci. Technol. B 2004, 22(1):82-89. 10.1116/1.1640396
    • (2004) J. Vac. Sci. Technol. B , vol.22 , Issue.1 , pp. 82-89
    • Tseng, A.A.1    Insua, I.A.2    Park, J.S.3    Li, B.4    Vakanas, G.P.5
  • 47
    • 65549158381 scopus 로고    scopus 로고
    • The nanofabrication of polydimethylsiloxane using a focused ion beam
    • 10.1088/0957-4484/20/14/145301
    • Guan L. Peng K. Yang Y. Qiu X. Wang C. The nanofabrication of polydimethylsiloxane using a focused ion beam. Nanotechnology 2009, 20(14):145301. 10.1088/0957-4484/20/14/145301
    • (2009) Nanotechnology , vol.20 , Issue.14 , pp. 145301
    • Guan, L.1    Peng, K.2    Yang, Y.3    Qiu, X.4    Wang, C.5
  • 48
    • 0037666288 scopus 로고    scopus 로고
    • Nanoscale effects in focused ion beam processing
    • 10.1007/s00339-002-1943-1
    • Frey L. Lehrer C. Ryssel H. Nanoscale effects in focused ion beam processing. Appl. Phys. A: Mater. Sci. Process. 2003, 76(7):1017-1023. 10.1007/s00339-002-1943-1
    • (2003) Appl. Phys. A: Mater. Sci. Process. , vol.76 , Issue.7 , pp. 1017-1023
    • Frey, L.1    Lehrer, C.2    Ryssel, H.3
  • 49
    • 0037292788 scopus 로고    scopus 로고
    • Focused ion beam fabrication of silicon print masters
    • 10.1088/0957-4484/14/2/323
    • Li H.-W. Kang D.-J. Blamire M.G. Huck W.T. Focused ion beam fabrication of silicon print masters. Nanotechnology 2003, 14:220-223. 10.1088/0957-4484/14/2/323
    • (2003) Nanotechnology , vol.14 , pp. 220-223
    • Li, H.-W.1    Kang, D.-J.2    Blamire, M.G.3    Huck, W.T.4
  • 50
    • 77958609588 scopus 로고    scopus 로고
    • Nanofluidic single-molecule sorting of DNA: A new concept in separation and analysis of biomolecules towards ultimate level performance
    • 10.1088/0957-4484/21/39/395502
    • Yamamoto T. Fujii T. Nanofluidic single-molecule sorting of DNA: A new concept in separation and analysis of biomolecules towards ultimate level performance. Nanotechnology 2010, 21(39):395502. 10.1088/0957-4484/21/39/395502
    • (2010) Nanotechnology , vol.21 , Issue.39 , pp. 395502
    • Yamamoto, T.1    Fujii, T.2
  • 51
    • 79851472058 scopus 로고    scopus 로고
    • Fabrication of sub-5 nm nanochannels in insulating substrates using focused ion beam milling
    • 10.1021/nl103369g
    • Menard L.D. Ramsey J.M. Fabrication of sub-5 nm nanochannels in insulating substrates using focused ion beam milling. Nano Lett. 2011, 11(2):512-517. 10.1021/nl103369g
    • (2011) Nano Lett. , vol.11 , Issue.2 , pp. 512-517
    • Menard, L.D.1    Ramsey, J.M.2
  • 52
    • 65449143627 scopus 로고    scopus 로고
    • A nanofluidic channel with embedded transverse nanoelectrodes
    • 10.1088/0957-4484/20/10/105302
    • Maleki T. Mohammadi S. Ziaie B. A nanofluidic channel with embedded transverse nanoelectrodes. Nanotechnology 2009, 20(10):105302. 10.1088/0957-4484/20/10/105302
    • (2009) Nanotechnology , vol.20 , Issue.10 , pp. 105302
    • Maleki, T.1    Mohammadi, S.2    Ziaie, B.3
  • 53
    • 12344269867 scopus 로고    scopus 로고
    • Milling yield estimation in focused ion beam milling of two-layer substrates
    • 10.1088/0960-1317/15/1/004
    • Tseng A.A. Insua I.A. Park J.-S. Chen C.D. Milling yield estimation in focused ion beam milling of two-layer substrates. J. Micromech. Microeng. 2005, 15(1):20-28. 10.1088/0960-1317/15/1/004
    • (2005) J. Micromech. Microeng. , vol.15 , Issue.1 , pp. 20-28
    • Tseng, A.A.1    Insua, I.A.2    Park, J.-S.3    Chen, C.D.4
  • 54
    • 79960351162 scopus 로고    scopus 로고
    • DNA manipulation with elastomeric nanostructures fabricated by soft-moulding of a FIB-patterned stamp
    • 10.1039/c1lc20411d
    • Angeli E. Manneschi C. Repetto L. Firpo G. Valbusa U. DNA manipulation with elastomeric nanostructures fabricated by soft-moulding of a FIB-patterned stamp. Lab Chip 2011, 11(15):2625-2629. 10.1039/c1lc20411d
    • (2011) Lab Chip , vol.11 , Issue.15 , pp. 2625-2629
    • Angeli, E.1    Manneschi, C.2    Repetto, L.3    Firpo, G.4    Valbusa, U.5
  • 56
    • 80051651069 scopus 로고    scopus 로고
    • Complete plastic nanofluidic devices for DNA analysis via direct imprinting with polymer stamps
    • 10.1039/c1lc20294d
    • Wu J. Chantiwas R. Amirsadeghi A. Soper S.A. Park S. Complete plastic nanofluidic devices for DNA analysis via direct imprinting with polymer stamps. Lab Chip 2011, 11(17):2984-2989. 10.1039/c1lc20294d
    • (2011) Lab Chip , vol.11 , Issue.17 , pp. 2984-2989
    • Wu, J.1    Chantiwas, R.2    Amirsadeghi, A.3    Soper, S.A.4    Park, S.5
  • 57
    • 34250642011 scopus 로고    scopus 로고
    • Nanoimprint lithography: Methods and material requirements
    • 10.1002/adma.200600882
    • Guo L.J. Nanoimprint lithography: Methods and material requirements. Adv. Mater. 2007, 19(4):495-513. 10.1002/adma.200600882
    • (2007) Adv. Mater. , vol.19 , Issue.4 , pp. 495-513
    • Guo, L.J.1
  • 58
    • 76949098714 scopus 로고    scopus 로고
    • Fabrication of micro/nano fluidic system combining hybrid mask-mould lithography with thermal bonding
    • 10.1016/j.mee.2009.12.024
    • Li X. Wang X. Jin J. Tang Q. Tian Y. Fu S. Cui Z. Fabrication of micro/nano fluidic system combining hybrid mask-mould lithography with thermal bonding. Microelectron. Eng. 2010, 87(5-8):722-725. 10.1016/j.mee.2009.12.024
    • (2010) Microelectron. Eng. , vol.87 , Issue.5-8 , pp. 722-725
    • Li, X.1    Wang, X.2    Jin, J.3    Tang, Q.4    Tian, Y.5    Fu, S.6    Cui, Z.7
  • 59
    • 37149004251 scopus 로고    scopus 로고
    • Stretching and selective immobilization of DNA in SU-8 micro- and nanochannels
    • 10.1116/1.2806975
    • Yang B. Dukkipati V.R. Li D. Cardozo B.L. Pang S.W. Stretching and selective immobilization of DNA in SU-8 micro- and nanochannels. J. Vac. Sci. Technol. B 2007, 25(6):2352-2356. 10.1116/1.2806975
    • (2007) J. Vac. Sci. Technol. B , vol.25 , Issue.6 , pp. 2352-2356
    • Yang, B.1    Dukkipati, V.R.2    Li, D.3    Cardozo, B.L.4    Pang, S.W.5
  • 60
    • 42549083875 scopus 로고    scopus 로고
    • Stretching DNA in polymer nanochannels fabricated by thermal imprint in PMMA
    • 10.1088/0957-4484/19/12/125301
    • Thamdrup L.H. Klukowska A. Kristensen A. Stretching DNA in polymer nanochannels fabricated by thermal imprint in PMMA. Nanotechnology 2008, 19(12):125301. 10.1088/0957-4484/19/12/125301
    • (2008) Nanotechnology , vol.19 , Issue.12 , pp. 125301
    • Thamdrup, L.H.1    Klukowska, A.2    Kristensen, A.3
  • 61
    • 77956268642 scopus 로고    scopus 로고
    • Fabrication of high-aspect-ratio polymer nanochannels using a novel Si nanoimprint mold and solvent-assisted sealing
    • 10.1007/s10404-009-0509-3
    • Cho Y.H. Park J. Park H. Cheng X. Kim B.J. Han A. Fabrication of high-aspect-ratio polymer nanochannels using a novel Si nanoimprint mold and solvent-assisted sealing. Microfluid. Nanofluid. 2009, 9(2-3):163-170. 10.1007/s10404-009-0509-3
    • (2009) Microfluid. Nanofluid. , vol.9 , Issue.2-3 , pp. 163-170
    • Cho, Y.H.1    Park, J.2    Park, H.3    Cheng, X.4    Kim, B.J.5    Han, A.6
  • 62
    • 58149308805 scopus 로고    scopus 로고
    • Sub-10 nm self-enclosed self-limited nanofluidic channel arrays
    • 10.1021/nl802219b
    • Xia Q. Morton K.J. Austin R.H. Chou S.Y. Sub-10 nm self-enclosed self-limited nanofluidic channel arrays. Nano Lett. 2008, 8(11):3830-3833. 10.1021/nl802219b
    • (2008) Nano Lett. , vol.8 , Issue.11 , pp. 3830-3833
    • Xia, Q.1    Morton, K.J.2    Austin, R.H.3    Chou, S.Y.4
  • 63
    • 0842287340 scopus 로고    scopus 로고
    • Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching
    • 10.1021/nl034877i
    • Guo L.J. Cheng X. Chou C.F. Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching. Nano Lett. 2004, 4(1):, 69-73. 10.1021/nl034877i
    • (2004) Nano Lett. , vol.4 , Issue.1 , pp. 69-73
    • Guo, L.J.1    Cheng, X.2    Chou, C.F.3
  • 64
    • 78149365721 scopus 로고    scopus 로고
    • Simple replication methods for producing nanoslits in thermoplastics and the transport dynamics of double-stranded DNA through these slits
    • 10.1039/c0lc00096e
    • Chantiwas R. Hupert M.L. Pullagurla S.R. Balamurugan S. Tamarit-Lopez J. Park S. Datta P. Goettert J. Cho Y.K. Soper S.A. Simple replication methods for producing nanoslits in thermoplastics and the transport dynamics of double-stranded DNA through these slits. Lab Chip 2010, 10(23):3255-3264. 10.1039/c0lc00096e
    • (2010) Lab Chip , vol.10 , Issue.23 , pp. 3255-3264
    • Chantiwas, R.1    Hupert, M.L.2    Pullagurla, S.R.3    Balamurugan, S.4    Tamarit-Lopez, J.5    Park, S.6    Datta, P.7    Goettert, J.8    Cho, Y.K.9    Soper, S.A.10
  • 65
    • 84055182564 scopus 로고    scopus 로고
    • All-silica nanofluidic devices for DNA-analysis fabricated by imprint of sol-gel silica with silicon stamp
    • 10.1039/c1lc20689c
    • Mikkelsen M.B. Letailleur A.A. Sondergard E. Barthel E. Teisseire J. Marie R. Kristensen A. All-silica nanofluidic devices for DNA-analysis fabricated by imprint of sol-gel silica with silicon stamp. Lab Chip 2012, 12(2):262-267. 10.1039/c1lc20689c
    • (2012) Lab Chip , vol.12 , Issue.2 , pp. 262-267
    • Mikkelsen, M.B.1    Letailleur, A.A.2    Sondergard, E.3    Barthel, E.4    Teisseire, J.5    Marie, R.6    Kristensen, A.7
  • 66
    • 80052552859 scopus 로고    scopus 로고
    • Formation of hierarchical silica nanochannels through nanoimprint lithography.
    • 10.1039/c1jm11493j
    • Hendricks N.R. Watkins J.J. Carter K.R. Formation of hierarchical silica nanochannels through nanoimprint lithography. J. Mater. Chem. 2011, 21(37):14213-14218. 10.1039/c1jm11493j
    • (2011) J. Mater. Chem. , vol.21 , Issue.37 , pp. 14213-14218
    • Hendricks, N.R.1    Watkins, J.J.2    Carter, K.R.3
  • 67
    • 29044442382 scopus 로고    scopus 로고
    • Sealed three-dimensional nanochannels
    • 10.1116/1.2121728
    • Reano R.M. Pang S.W. Sealed three-dimensional nanochannels. J. Vac. Sci. Technol. B 2005, 23(6):2995-2999. 10.1116/1.2121728
    • (2005) J. Vac. Sci. Technol. B , vol.23 , Issue.6 , pp. 2995-2999
    • Reano, R.M.1    Pang, S.W.2
  • 68
    • 46749110844 scopus 로고    scopus 로고
    • Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis
    • 10.1021/nl080473k
    • Liang X. Chou S.Y. Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis. Nano Lett. 2008, 8(5):1472-1476. 10.1021/nl080473k
    • (2008) Nano Lett. , vol.8 , Issue.5 , pp. 1472-1476
    • Liang, X.1    Chou, S.Y.2
  • 69
    • 78650843200 scopus 로고    scopus 로고
    • Nanostructures and functional materials fabricated by interferometric lithography
    • 10.1002/adma.201001856
    • Xia D. Ku Z. Lee S.C. Brueck S.R. Nanostructures and functional materials fabricated by interferometric lithography. Adv. Mater. 2011, 23(2):147-179. 10.1002/adma.201001856
    • (2011) Adv. Mater. , vol.23 , Issue.2 , pp. 147-179
    • Xia, D.1    Ku, Z.2    Lee, S.C.3    Brueck, S.R.4
  • 70
    • 38849093274 scopus 로고    scopus 로고
    • Monitoring FET flow control and wall adsorption of charged fluorescent dye molecules in nanochannels integrated into a multiple internal reflection infrared waveguide
    • 10.1039/b711682a
    • Oh Y.J. Gamble T.C. Leonhardt D. Chung C.H. Brueck S.R. Ivory C.F. Lopez G.P. Petsev D.N. Han S.M. Monitoring FET flow control and wall adsorption of charged fluorescent dye molecules in nanochannels integrated into a multiple internal reflection infrared waveguide. Lab Chip 2008, 8(2):251-258. 10.1039/b711682a
    • (2008) Lab Chip , vol.8 , Issue.2 , pp. 251-258
    • Oh, Y.J.1    Gamble, T.C.2    Leonhardt, D.3    Chung, C.H.4    Brueck, S.R.5    Ivory, C.F.6    Lopez, G.P.7    Petsev, D.N.8    Han, S.M.9
  • 71
    • 66149105797 scopus 로고    scopus 로고
    • Impact of leakage current and electrolysis on FET flow control and pH changes in nanofluidic channels
    • 10.1039/b816384g
    • Oh Y.J. Bottenus D. Ivory C.F. Han S.M. Impact of leakage current and electrolysis on FET flow control and pH changes in nanofluidic channels. Lab Chip 2009, 9(11):1609-1617. 10.1039/b816384g
    • (2009) Lab Chip , vol.9 , Issue.11 , pp. 1609-1617
    • Oh, Y.J.1    Bottenus, D.2    Ivory, C.F.3    Han, S.M.4
  • 73
    • 62749107653 scopus 로고    scopus 로고
    • Experimentally and theoretically observed native pH shifts in a nanochannel array
    • 10.1039/b803278e
    • Bottenus D. Oh Y.J. Han S.M. Ivory C.F. Experimentally and theoretically observed native pH shifts in a nanochannel array. Lab Chip 2009, 9(2):219-231. 10.1039/b803278e
    • (2009) Lab Chip , vol.9 , Issue.2 , pp. 219-231
    • Bottenus, D.1    Oh, Y.J.2    Han, S.M.3    Ivory, C.F.4
  • 75
    • 66149171649 scopus 로고    scopus 로고
    • Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control
    • 10.1039/b901382m
    • Oh Y.J. Garcia A.L. Petsev D.N. Lopez G.P. Brueck S.R. Ivory C.F. Han S.M. Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control. Lab Chip 2009, 9(11):1601-1608. 10.1039/b901382m
    • (2009) Lab Chip , vol.9 , Issue.11 , pp. 1601-1608
    • Oh, Y.J.1    Garcia, A.L.2    Petsev, D.N.3    Lopez, G.P.4    Brueck, S.R.5    Ivory, C.F.6    Han, S.M.7
  • 76
    • 52649119400 scopus 로고    scopus 로고
    • Electric field control and analyte transport in Si/SiO2 fluidic nanochannels
    • 10.1039/b804256j
    • Zhang Y. Gamble T.C. Neumann A. Lopez G.P. Brueck S.R. Petsev D.N. Electric field control and analyte transport in Si/SiO2 fluidic nanochannels. Lab Chip 2008, 8(10):1671-1675. 10.1039/b804256j
    • (2008) Lab Chip , vol.8 , Issue.10 , pp. 1671-1675
    • Zhang, Y.1    Gamble, T.C.2    Neumann, A.3    Lopez, G.P.4    Brueck, S.R.5    Petsev, D.N.6
  • 78
    • 77954761612 scopus 로고    scopus 로고
    • Super permeable nano-channel membranes defined with laser interferometric lithography
    • 10.1007/s10404-009-0537-z
    • Elman N.M. Daniel K. Jalali-Yazdi F. Cima M.J. Super permeable nano-channel membranes defined with laser interferometric lithography. Microfluid. Nanofluid. 2009, 8(4):557-563. 10.1007/s10404-009-0537-z
    • (2009) Microfluid. Nanofluid. , vol.8 , Issue.4 , pp. 557-563
    • Elman, N.M.1    Daniel, K.2    Jalali-Yazdi, F.3    Cima, M.J.4
  • 79
    • 80053470701 scopus 로고    scopus 로고
    • Real-time template-assisted manipulation of nanoparticles in a multilayer nanofluidic chip
    • 10.1002/smll.201100264
    • Chen H.M. Pang L. Gordon M.S. Fainman Y. Real-time template-assisted manipulation of nanoparticles in a multilayer nanofluidic chip. Small 2011, 7(19):2750-2757. 10.1002/smll.201100264
    • (2011) Small , vol.7 , Issue.19 , pp. 2750-2757
    • Chen, H.M.1    Pang, L.2    Gordon, M.S.3    Fainman, Y.4
  • 80
    • 59349112590 scopus 로고    scopus 로고
    • Colloidal lithography-The art of nanochemical patterning
    • 10.1002/asia.200800298
    • Zhang G. Wang D. Colloidal lithography-The art of nanochemical patterning. Chem. Asian J. 2009, 4(2):236-245. 10.1002/asia.200800298
    • (2009) Chem. Asian J. , vol.4 , Issue.2 , pp. 236-245
    • Zhang, G.1    Wang, D.2
  • 81
    • 39849090680 scopus 로고    scopus 로고
    • Ordered micro/nanostructured arrays based on the monolayer colloidal crystals
    • 10.1021/cm701977g
    • Li Y. Cai W. Duan G. Ordered micro/nanostructured arrays based on the monolayer colloidal crystals. Chem. Mater. 2008, 20(3):615-624. 10.1021/cm701977g
    • (2008) Chem. Mater. , vol.20 , Issue.3 , pp. 615-624
    • Li, Y.1    Cai, W.2    Duan, G.3
  • 82
    • 84858976221 scopus 로고    scopus 로고
    • From soft to hard: The generation of functional and complex colloidal monolayers for nanolithography
    • 10.1039/c1sm06650a
    • Vogel N. Weiss C.K. Landfester K. From soft to hard: The generation of functional and complex colloidal monolayers for nanolithography. Soft Matter 2012, 8(15):4044. 10.1039/c1sm06650a
    • (2012) Soft Matter , vol.8 , Issue.15 , pp. 4044
    • Vogel, N.1    Weiss, C.K.2    Landfester, K.3
  • 83
    • 4444306296 scopus 로고    scopus 로고
    • Sub-100 nm triangular nanopores fabricated with the reactive ion etching variant of nanosphere lithography and angle-resolved nanosphere lithography
    • 10.1021/nl049345w
    • Whitney A.V. Myers B.D. Van Duyne R.P. Sub-100 nm triangular nanopores fabricated with the reactive ion etching variant of nanosphere lithography and angle-resolved nanosphere lithography. Nano Lett. 2004, 4(8):1507-1511. 10.1021/nl049345w
    • (2004) Nano Lett. , vol.4 , Issue.8 , pp. 1507-1511
    • Whitney, A.V.1    Myers, B.D.2    Van Duyne, R.P.3
  • 84
    • 0027005198 scopus 로고
    • Mechanism of formation of two-dimensional crystals from latex particles on substrates
    • 10.1021/la00048a054
    • Denkov N. Velev O. Kralchevski P. Ivanov I. Yoshimura H. Nagayama K. Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir 1992, 8(12):3183-3190. 10.1021/la00048a054
    • (1992) Langmuir , vol.8 , Issue.12 , pp. 3183-3190
    • Denkov, N.1    Velev, O.2    Kralchevski, P.3    Ivanov, I.4    Yoshimura, H.5    Nagayama, K.6
  • 85
    • 33644663404 scopus 로고    scopus 로고
    • Spontaneous formation of nanoparticle stripe patterns through dewetting
    • 10.1038/nmat1517
    • Huang J. Kim F. Tao A.R. Connor S. Yang P. Spontaneous formation of nanoparticle stripe patterns through dewetting. Nature Mater. 2005, 4(12):896-900. 10.1038/nmat1517
    • (2005) Nature Mater. , vol.4 , Issue.12 , pp. 896-900
    • Huang, J.1    Kim, F.2    Tao, A.R.3    Connor, S.4    Yang, P.5
  • 86
    • 53349143988 scopus 로고    scopus 로고
    • Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching
    • 10.1063/1.2988893
    • Hsu C.-M. Connor S.T. Tang M.X. Cui Y. Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching. Appl. Phys. Lett. 2008, 93(13):133109. 10.1063/1.2988893
    • (2008) Appl. Phys. Lett. , vol.93 , Issue.13 , pp. 133109
    • Hsu, C.-M.1    Connor, S.T.2    Tang, M.X.3    Cui, Y.4
  • 87
    • 77955563758 scopus 로고    scopus 로고
    • Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications
    • 10.1021/nl101432r
    • Jeong S. Hu L. Lee H.R. Garnett E. Choi J.W. Cui Y. Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications. Nano Lett. 2010, 10(8):2989-2994. 10.1021/nl101432r
    • (2010) Nano Lett. , vol.10 , Issue.8 , pp. 2989-2994
    • Jeong, S.1    Hu, L.2    Lee, H.R.3    Garnett, E.4    Choi, J.W.5    Cui, Y.6
  • 88
    • 45749133886 scopus 로고    scopus 로고
    • Self-supporting nanopore membranes with controlled pore size and shape
    • 10.1021/nn8000017
    • Lu Z.X. Namboodiri A. Collinson M.M. Self-supporting nanopore membranes with controlled pore size and shape. ACS Nano 2008, 2(5):993-999. 10.1021/nn8000017
    • (2008) ACS Nano , vol.2 , Issue.5 , pp. 993-999
    • Lu, Z.X.1    Namboodiri, A.2    Collinson, M.M.3
  • 89
    • 0001223244 scopus 로고    scopus 로고
    • Nanochannel fabrication for chemical sensors
    • 10.1116/1.589750
    • Stern M.B. Geis M.W. Curtin J.E. Nanochannel fabrication for chemical sensors. J. Vac. Sci. Technol. B 1997, 15(6):2887-2891. 10.1116/1.589750
    • (1997) J. Vac. Sci. Technol. B , vol.15 , Issue.6 , pp. 2887-2891
    • Stern, M.B.1    Geis, M.W.2    Curtin, J.E.3
  • 90
    • 19944383809 scopus 로고    scopus 로고
    • Electrostatic control of ions and molecules in nanofluidic transistors
    • 10.1021/nl050493b
    • Karnik R. Fan R. Yue M. Li D. Yang P. Majumdar A. Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett. 2005, 5(5):943-948. 10.1021/nl050493b
    • (2005) Nano Lett. , vol.5 , Issue.5 , pp. 943-948
    • Karnik, R.1    Fan, R.2    Yue, M.3    Li, D.4    Yang, P.5    Majumdar, A.6
  • 91
    • 25844442065 scopus 로고    scopus 로고
    • Effects of biological reactions and modifications on conductance of nanofluidic channels
    • 10.1021/nl050966e
    • Karnik R. Castelino K. Fan R. Yang P. Majumdar A. Effects of biological reactions and modifications on conductance of nanofluidic channels. Nano Lett. 2005, 5(9):1638-1642. 10.1021/nl050966e
    • (2005) Nano Lett. , vol.5 , Issue.9 , pp. 1638-1642
    • Karnik, R.1    Castelino, K.2    Fan, R.3    Yang, P.4    Majumdar, A.5
  • 92
    • 33645513029 scopus 로고    scopus 로고
    • Field-effect control of protein transport in a nanofluidic transistor circuit
    • 10.1063/1.2186967
    • Karnik R. Castelino K. Majumdar A. Field-effect control of protein transport in a nanofluidic transistor circuit. Appl. Phys. Lett. 2006, 88(12):123114. 10.1063/1.2186967
    • (2006) Appl. Phys. Lett. , vol.88 , Issue.12 , pp. 123114
    • Karnik, R.1    Castelino, K.2    Majumdar, A.3
  • 93
    • 34047096978 scopus 로고    scopus 로고
    • Rectification of ionic current in a nanofluidic diode
    • 10.1021/nl062806o
    • Karnik R. Duan C. Castelino K. Daiguji H. Majumdar A. Rectification of ionic current in a nanofluidic diode. Nano Lett. 2007, 7(3):547-551. 10.1021/nl062806o
    • (2007) Nano Lett. , vol.7 , Issue.3 , pp. 547-551
    • Karnik, R.1    Duan, C.2    Castelino, K.3    Daiguji, H.4    Majumdar, A.5
  • 94
    • 36248992516 scopus 로고    scopus 로고
    • Rectified ion transport through concentration gradient in homogeneous silica nanochannels
    • 10.1021/nl071770c
    • Cheng L.J. Guo L.J. Rectified ion transport through concentration gradient in homogeneous silica nanochannels. Nano Lett. 2007, 7(10):3165-3171. 10.1021/nl071770c
    • (2007) Nano Lett. , vol.7 , Issue.10 , pp. 3165-3171
    • Cheng, L.J.1    Guo, L.J.2
  • 95
    • 77953319235 scopus 로고    scopus 로고
    • Fabrication of a nanomechanical mass sensor containing a nanofluidic channel
    • 10.1021/nl100193g
    • Barton R.A. Ilic B. Verbridge S.S. Cipriany B.R. Parpia J.M. Craighead H.G. Fabrication of a nanomechanical mass sensor containing a nanofluidic channel. Nano Lett. 2010, 10(6):2058-2063. 10.1021/nl100193g
    • (2010) Nano Lett. , vol.10 , Issue.6 , pp. 2058-2063
    • Barton, R.A.1    Ilic, B.2    Verbridge, S.S.3    Cipriany, B.R.4    Parpia, J.M.5    Craighead, H.G.6
  • 96
    • 33644934191 scopus 로고    scopus 로고
    • Fabrication and electroosmotic flow measurements in micro- and nanofluidic channels
    • 10.1007/s10404-005-0051-x
    • Hug T.S. de Rooij N.F. Staufer U. Fabrication and electroosmotic flow measurements in micro- and nanofluidic channels. Microfluid. Nanofluid. 2006, 2(2):117-124. 10.1007/s10404-005-0051-x
    • (2006) Microfluid. Nanofluid. , vol.2 , Issue.2 , pp. 117-124
    • Hug, T.S.1    de Rooij, N.F.2    Staufer, U.3
  • 97
    • 84857948974 scopus 로고    scopus 로고
    • Micromachined nanofiltration modules for lab-on-a-chip applications
    • 10.1088/0960-1317/22/2/025003
    • Shen C. Mokkapati V.R. S. S. Pham H.T. M. Sarro P.M. Micromachined nanofiltration modules for lab-on-a-chip applications. J. Micromech. Microeng. 2012, 22(2):025003. 10.1088/0960-1317/22/2/025003
    • (2012) J. Micromech. Microeng. , vol.22 , Issue.2 , pp. 025003
    • Shen, C.1    Mokkapati, V.R.S.S.2    Pham, H.T.M.3    Sarro, P.M.4
  • 98
    • 3142769705 scopus 로고    scopus 로고
    • 1-D nanochannels fabricated in polyimide
    • 10.1039/b315859d
    • Eijkel J.C. Bomer J. Tas N.R. van den Berg A. 1-D nanochannels fabricated in polyimide. Lab Chip 2004, 4(3):161-163. 10.1039/b315859d
    • (2004) Lab Chip , vol.4 , Issue.3 , pp. 161-163
    • Eijkel, J.C.1    Bomer, J.2    Tas, N.R.3    van den Berg, A.4
  • 100
    • 37349125174 scopus 로고    scopus 로고
    • Nanochannels in SU-8 with floor and ceiling metal electrodes and integrated microchannels
    • 10.1039/b715917j
    • Nichols K.P. Eijkel J.C. Gardeniers H.J. Nanochannels in SU-8 with floor and ceiling metal electrodes and integrated microchannels. Lab Chip 2008, 8(1):173-175. 10.1039/b715917j
    • (2008) Lab Chip , vol.8 , Issue.1 , pp. 173-175
    • Nichols, K.P.1    Eijkel, J.C.2    Gardeniers, H.J.3
  • 101
    • 79960281274 scopus 로고    scopus 로고
    • Stochastic sensing of single molecules in a nanofluidic electrochemical device
    • 10.1021/nl2013423
    • Zevenbergen M.A. Singh P.S. Goluch E.D. Wolfrum B.L. Lemay S.G. Stochastic sensing of single molecules in a nanofluidic electrochemical device. Nano Lett. 2011, 11(7):2881-2886. 10.1021/nl2013423
    • (2011) Nano Lett. , vol.11 , Issue.7 , pp. 2881-2886
    • Zevenbergen, M.A.1    Singh, P.S.2    Goluch, E.D.3    Wolfrum, B.L.4    Lemay, S.G.5
  • 102
    • 73149089074 scopus 로고    scopus 로고
    • Selective trapping and concentration of nanoparticles and viruses in dual-height nanofluidic channels
    • 10.1039/b916746c
    • Hamblin M.N. Xuan J. Maynes D. Tolley H.D. Belnap D.M. Woolley A.T. Lee M.L. Hawkins A.R. Selective trapping and concentration of nanoparticles and viruses in dual-height nanofluidic channels. Lab Chip 2010, 10(2):173-178. 10.1039/b916746c
    • (2010) Lab Chip , vol.10 , Issue.2 , pp. 173-178
    • Hamblin, M.N.1    Xuan, J.2    Maynes, D.3    Tolley, H.D.4    Belnap, D.M.5    Woolley, A.T.6    Lee, M.L.7    Hawkins, A.R.8
  • 103
    • 40049104721 scopus 로고    scopus 로고
    • Rapid sacrificial layer etching for the fabrication of nanochannels with integrated metal electrodes
    • 10.1039/b716382g
    • Sparreboom W. Eijkel J.C. Bomer J. van den Berg A. Rapid sacrificial layer etching for the fabrication of nanochannels with integrated metal electrodes. Lab Chip 2008, 8(3):402-407. 10.1039/b716382g
    • (2008) Lab Chip , vol.8 , Issue.3 , pp. 402-407
    • Sparreboom, W.1    Eijkel, J.C.2    Bomer, J.3    van den Berg, A.4
  • 105
    • 33746626949 scopus 로고    scopus 로고
    • Fabrication of micro/nano fluidic channels with sacrificial galvanic coupled metals
    • 10.1088/0957-4484/17/13/018
    • Zeng H. Wan Z. Feinerman A.D. Fabrication of micro/nano fluidic channels with sacrificial galvanic coupled metals. Nanotechnology 2006, 17(13):3183-3188. 10.1088/0957-4484/17/13/018
    • (2006) Nanotechnology , vol.17 , Issue.13 , pp. 3183-3188
    • Zeng, H.1    Wan, Z.2    Feinerman, A.D.3
  • 106
    • 33746506148 scopus 로고    scopus 로고
    • Three-dimensional nanochannels formed by fast etching of polymer
    • 10.1116/1.2221319
    • Peng C. Pang S.W. Three-dimensional nanochannels formed by fast etching of polymer. J. Vac. Sci. Technol. B 2006, 24(4):1941-1946. 10.1116/1.2221319
    • (2006) J. Vac. Sci. Technol. B , vol.24 , Issue.4 , pp. 1941-1946
    • Peng, C.1    Pang, S.W.2
  • 107
    • 41149139892 scopus 로고    scopus 로고
    • Electrokinetics induced asymmetric transport in polymeric nanonozzles
    • 10.1039/b719410b
    • Wang S. Hu X. Lee L.J. Electrokinetics induced asymmetric transport in polymeric nanonozzles. Lab Chip 2008, 8(4):573-581. 10.1039/b719410b
    • (2008) Lab Chip , vol.8 , Issue.4 , pp. 573-581
    • Wang, S.1    Hu, X.2    Lee, L.J.3
  • 108
    • 53349156594 scopus 로고    scopus 로고
    • Nanochannels fabricated in polydimethylsiloxane using sacrificial electrospun polyethylene oxide nanofibers
    • 10.1116/1.2975199
    • Bellan L.M. Strychalski E.A. Craighead H.G. Nanochannels fabricated in polydimethylsiloxane using sacrificial electrospun polyethylene oxide nanofibers. J. Vac. Sci. Technol. B 2008, 26(5):1728-1731. 10.1116/1.2975199
    • (2008) J. Vac. Sci. Technol. B , vol.26 , Issue.5 , pp. 1728-1731
    • Bellan, L.M.1    Strychalski, E.A.2    Craighead, H.G.3
  • 110
    • 77957561593 scopus 로고    scopus 로고
    • Large laterally ordered nanochannel arrays from DNA combing and imprinting
    • 10.1002/adma.201000136
    • Guan J. Boukany P.E. Hemminger O. Chiou N.R. Zha W. Cavanaugh M. Lee L.J. Large laterally ordered nanochannel arrays from DNA combing and imprinting. Adv. Mater. 2010, 22(36):3997-4001. 10.1002/adma.201000136
    • (2010) Adv. Mater. , vol.22 , Issue.36 , pp. 3997-4001
    • Guan, J.1    Boukany, P.E.2    Hemminger, O.3    Chiou, N.R.4    Zha, W.5    Cavanaugh, M.6    Lee, L.J.7
  • 112
    • 78650135868 scopus 로고    scopus 로고
    • Fabricating millimeter to nanometer sized cavities concurrently for nanofluidic devices
    • 10.1116/1.3517701
    • Devlin N.R. Brown D.K. Fabricating millimeter to nanometer sized cavities concurrently for nanofluidic devices. J. Vac. Sci. Technol. B 2010, 28(6):C6I7-C6I10. 10.1116/1.3517701
    • (2010) J. Vac. Sci. Technol. B , vol.28 , Issue.6
    • Devlin, N.R.1    Brown, D.K.2
  • 113
    • 72849113887 scopus 로고    scopus 로고
    • Patterning decomposable polynorbornene with electron beam lithography to create nanochannels
    • 10.1116/1.3264658
    • Devlin N.R. Brown D.K. Kohl P.A. Patterning decomposable polynorbornene with electron beam lithography to create nanochannels. J. Vac. Sci. Technol. B 2009, 27(6):2508-2511. 10.1116/1.3264658
    • (2009) J. Vac. Sci. Technol. B , vol.27 , Issue.6 , pp. 2508-2511
    • Devlin, N.R.1    Brown, D.K.2    Kohl, P.A.3
  • 114
    • 0035519775 scopus 로고    scopus 로고
    • Heat-depolymerizable polycarbonates as electron beam patternable sacrificial layers for nanofluidics
    • 10.1116/1.1409383
    • Harnett C.K. Coates G.W. Craighead H.G. Heat-depolymerizable polycarbonates as electron beam patternable sacrificial layers for nanofluidics. J. Vac. Sci. Technol. B 2001, 19(6):2842-2845. 10.1116/1.1409383
    • (2001) J. Vac. Sci. Technol. B , vol.19 , Issue.6 , pp. 2842-2845
    • Harnett, C.K.1    Coates, G.W.2    Craighead, H.G.3
  • 115
    • 81455153170 scopus 로고    scopus 로고
    • A novel fabrication method for centimeter-long surface-micromachined nanochannels
    • 10.1088/0960-1317/20/1/015040
    • Huang X.T. Gupta C. Pennathur S. A novel fabrication method for centimeter-long surface-micromachined nanochannels. J. Micromech. Microeng. 2010, 20(1):015040. 10.1088/0960-1317/20/1/015040
    • (2010) J. Micromech. Microeng. , vol.20 , Issue.1 , pp. 015040
    • Huang, X.T.1    Gupta, C.2    Pennathur, S.3
  • 116
    • 83355173934 scopus 로고    scopus 로고
    • Wafer-scale thin encapsulated two-dimensional nanochannels and its application toward visualization of single molecules
    • 10.1016/j.jcis.2011.10.001
    • Hoang H.T. Tong H.D. Segers-Nolten I.M. Tas N.R. Subramaniam V. Elwenspoek M.C. Wafer-scale thin encapsulated two-dimensional nanochannels and its application toward visualization of single molecules. J. Colloid Interface Sci. 2012, 367(1):455-459. 10.1016/j.jcis.2011.10.001
    • (2012) J. Colloid Interface Sci. , vol.367 , Issue.1 , pp. 455-459
    • Hoang, H.T.1    Tong, H.D.2    Segers-Nolten, I.M.3    Tas, N.R.4    Subramaniam, V.5    Elwenspoek, M.C.6
  • 120
    • 34247868965 scopus 로고    scopus 로고
    • An optofluidic device for surface enhanced Raman spectroscopy
    • 10.1039/b618105h
    • Wang M. Jing N. Chou I.H. Cote G.L. Kameoka J. An optofluidic device for surface enhanced Raman spectroscopy. Lab Chip 2007, 7(5):630-632. 10.1039/b618105h
    • (2007) Lab Chip , vol.7 , Issue.5 , pp. 630-632
    • Wang, M.1    Jing, N.2    Chou, I.H.3    Cote, G.L.4    Kameoka, J.5
  • 121
    • 40049112986 scopus 로고    scopus 로고
    • Pre-binding dynamic range and sensitivity enhancement for immuno-sensors using nanofluidic preconcentrator
    • 10.1039/b717220f
    • Wang Y.C. Han J. Pre-binding dynamic range and sensitivity enhancement for immuno-sensors using nanofluidic preconcentrator. Lab Chip 2008, 8(3):392-394. 10.1039/b717220f
    • (2008) Lab Chip , vol.8 , Issue.3 , pp. 392-394
    • Wang, Y.C.1    Han, J.2
  • 123
    • 41149164294 scopus 로고    scopus 로고
    • Non-equilibrium electrokinetic micro/nano fluidic mixer
    • 10.1039/b717268k
    • Kim D. Raj A. Zhu L. Masel R.I. Shannon M.A. Non-equilibrium electrokinetic micro/nano fluidic mixer. Lab Chip 2008, 8(4):625-628. 10.1039/b717268k
    • (2008) Lab Chip , vol.8 , Issue.4 , pp. 625-628
    • Kim, D.1    Raj, A.2    Zhu, L.3    Masel, R.I.4    Shannon, M.A.5
  • 124
    • 84860886525 scopus 로고    scopus 로고
    • Millisecond-order rapid micromixing with non-equilibrium electrokinetic phenomena
    • 10.1007/s10404-011-0918-y
    • Lee S.J. Kim D. Millisecond-order rapid micromixing with non-equilibrium electrokinetic phenomena. Microfluid. Nanofluid. 2011, 12:897-906. 10.1007/s10404-011-0918-y
    • (2011) Microfluid. Nanofluid. , vol.12 , pp. 897-906
    • Lee, S.J.1    Kim, D.2
  • 125
    • 78650015802 scopus 로고    scopus 로고
    • Anomalous ion transport in 2-nm hydrophilic nanochannels
    • 10.1038/nnano.2010.233
    • Duan C. Majumdar A. Anomalous ion transport in 2-nm hydrophilic nanochannels. Nat. Nanotechnol. 2010, 5(12):848-852. 10.1038/nnano.2010.233
    • (2010) Nat. Nanotechnol. , vol.5 , Issue.12 , pp. 848-852
    • Duan, C.1    Majumdar, A.2
  • 126
    • 33947660099 scopus 로고    scopus 로고
    • Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding
    • 10.1039/b616134k
    • Abgrall P. Low L.N. Nguyen N.T. Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding. Lab Chip 2007, 7(4):520-522. 10.1039/b616134k
    • (2007) Lab Chip , vol.7 , Issue.4 , pp. 520-522
    • Abgrall, P.1    Low, L.N.2    Nguyen, N.T.3
  • 127
    • 52949121370 scopus 로고    scopus 로고
    • Formation of ionic depletion/enrichment zones in a hybrid micro-/nano-channel
    • 10.1007/s10404-008-0281-9
    • Huang K.-D. Yang R.-J. Formation of ionic depletion/enrichment zones in a hybrid micro-/nano-channel. Microfluid. Nanofluid. 2008, 5(5):631-638. 10.1007/s10404-008-0281-9
    • (2008) Microfluid. Nanofluid. , vol.5 , Issue.5 , pp. 631-638
    • Huang, K.-D.1    Yang, R.-J.2
  • 128
    • 69249228545 scopus 로고    scopus 로고
    • Research on forming and application of U-form glass micro-nanofluidic chip with long nanochannels
    • 10.1007/s10404-009-0407-8
    • Xu Z. Wen J.-K. Liu C. Liu J.-S. Du L.-Q. Wang L.-D. Research on forming and application of U-form glass micro-nanofluidic chip with long nanochannels. Microfluid. Nanofluid. 2009, 7(3):423-429. 10.1007/s10404-009-0407-8
    • (2009) Microfluid. Nanofluid. , vol.7 , Issue.3 , pp. 423-429
    • Xu, Z.1    Wen, J.-K.2    Liu, C.3    Liu, J.-S.4    Du, L.-Q.5    Wang, L.-D.6
  • 129
    • 84855947884 scopus 로고    scopus 로고
    • Scalable attoliter monodisperse droplet formation using multiphase nano-microfluidics
    • 10.1007/s10404-011-0776-7
    • Shui L. Berg A. Eijkel J.C. T. Scalable attoliter monodisperse droplet formation using multiphase nano-microfluidics. Microfluid. Nanofluid. 2011, 11(1):87-92. 10.1007/s10404-011-0776-7
    • (2011) Microfluid. Nanofluid. , vol.11 , Issue.1 , pp. 87-92
    • Shui, L.1    Berg, A.2    Eijkel, J.C.T.3
  • 130
    • 3042754182 scopus 로고    scopus 로고
    • Ion-enrichment and ion-depletion effect of nanochannel structures
    • 10.1021/nl0494811
    • Pu Q.S. Yun J.S. Temkin H. Liu S.R. Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett. 2004, 4(6):1099-1103. 10.1021/nl0494811
    • (2004) Nano Lett. , vol.4 , Issue.6 , pp. 1099-1103
    • Pu, Q.S.1    Yun, J.S.2    Temkin, H.3    Liu, S.R.4
  • 131
    • 23144436386 scopus 로고    scopus 로고
    • From nanochannel-induced proton conduction enhancement to a nanochannel-based fuel cell
    • 10.1021/nl050712t
    • Liu S. Pu Q. Gao L. Korzeniewski C. Matzke C. From nanochannel-induced proton conduction enhancement to a nanochannel-based fuel cell. Nano Lett. 2005, 5(7):1389-1393. 10.1021/nl050712t
    • (2005) Nano Lett. , vol.5 , Issue.7 , pp. 1389-1393
    • Liu, S.1    Pu, Q.2    Gao, L.3    Korzeniewski, C.4    Matzke, C.5
  • 132
    • 38049155574 scopus 로고    scopus 로고
    • Electrical detection of fast reaction kinetics in nanochannels with an induced flow
    • 10.1021/nl0724788
    • Schoch R.B. Cheow L.F. Han J. Electrical detection of fast reaction kinetics in nanochannels with an induced flow. Nano Lett. 2007, 7(12):3895-3900. 10.1021/nl0724788
    • (2007) Nano Lett. , vol.7 , Issue.12 , pp. 3895-3900
    • Schoch, R.B.1    Cheow, L.F.2    Han, J.3
  • 133
    • 80755159079 scopus 로고    scopus 로고
    • Effect of nanochannel geometry on DNA structure in the presence of macromolecular crowding agent
    • 10.1021/nl203114f
    • Jones J.J. van der Maarel J.R. Doyle P.S. Effect of nanochannel geometry on DNA structure in the presence of macromolecular crowding agent. Nano Lett. 2011, 11(11):5047-5053. 10.1021/nl203114f
    • (2011) Nano Lett. , vol.11 , Issue.11 , pp. 5047-5053
    • Jones, J.J.1    van der Maarel, J.R.2    Doyle, P.S.3
  • 134
    • 48449095998 scopus 로고    scopus 로고
    • Nanofluidic biosensing for beta-amyloid detection using surface enhanced Raman spectroscopy
    • 10.1021/nl0808132
    • Chou I.H. Benford M. Beier H.T. Cote G.L. Wang M. Jing N. Kameoka J. Good T.A. Nanofluidic biosensing for beta-amyloid detection using surface enhanced Raman spectroscopy. Nano Lett. 2008, 8(6):1729-1735. 10.1021/nl0808132
    • (2008) Nano Lett. , vol.8 , Issue.6 , pp. 1729-1735
    • Chou, I.H.1    Benford, M.2    Beier, H.T.3    Cote, G.L.4    Wang, M.5    Jing, N.6    Kameoka, J.7    Good, T.A.8
  • 135
  • 136
    • 23644452355 scopus 로고    scopus 로고
    • Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding
    • 10.1039/b502809d
    • Mao P. Han J. Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding. Lab Chip 2005, 5(8):837-844. 10.1039/b502809d
    • (2005) Lab Chip , vol.5 , Issue.8 , pp. 837-844
    • Mao, P.1    Han, J.2
  • 137
    • 26844435728 scopus 로고    scopus 로고
    • Measurements of diffusion coefficients in 1-D micro- and nanochannels using shear-driven flows
    • 10.1039/b505122c
    • Pappaert K. Biesemans J. Clicq D. Vankrunkelsven S. Desmet G. Measurements of diffusion coefficients in 1-D micro- and nanochannels using shear-driven flows. Lab Chip 2005, 5(10):1104-1110. 10.1039/b505122c
    • (2005) Lab Chip , vol.5 , Issue.10 , pp. 1104-1110
    • Pappaert, K.1    Biesemans, J.2    Clicq, D.3    Vankrunkelsven, S.4    Desmet, G.5
  • 138
    • 36248930900 scopus 로고    scopus 로고
    • Direct measurement of effective diffusion coefficients in nanochannels using steady-state dispersion effects
    • 10.1063/1.2801625
    • Durand N.F. Y. Bertsch A. Todorova M. Renaud P. Direct measurement of effective diffusion coefficients in nanochannels using steady-state dispersion effects. Appl. Phys. Lett. 2007, 91(20):203106. 10.1063/1.2801625
    • (2007) Appl. Phys. Lett. , vol.91 , Issue.20 , pp. 203106
    • Durand, N.F.Y.1    Bertsch, A.2    Todorova, M.3    Renaud, P.4
  • 139
    • 62749200487 scopus 로고    scopus 로고
    • Label-free determination of protein-surface interaction kinetics by ionic conductance inside a nanochannel
    • 10.1039/b811006a
    • Durand N.F. Renaud P. Label-free determination of protein-surface interaction kinetics by ionic conductance inside a nanochannel. Lab Chip 2009, 9(2):319-324. 10.1039/b811006a
    • (2009) Lab Chip , vol.9 , Issue.2 , pp. 319-324
    • Durand, N.F.1    Renaud, P.2
  • 140
    • 21644437442 scopus 로고    scopus 로고
    • Ionic transport phenomena in nanofluidics: Experimental and theoretical study of the exclusion-enrichment effect on a chip
    • 10.1021/nl050265h
    • Plecis A. Schoch R.B. Renaud P. Ionic transport phenomena in nanofluidics: Experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett. 2005, 5(6):1147-1155. 10.1021/nl050265h
    • (2005) Nano Lett. , vol.5 , Issue.6 , pp. 1147-1155
    • Plecis, A.1    Schoch, R.B.2    Renaud, P.3
  • 141
    • 33645416781 scopus 로고    scopus 로고
    • PH-controlled diffusion of proteins with different pI values across a nanochannel on a chip
    • 10.1021/nl052372h
    • Schoch R.B. Bertsch A. Renaud P. pH-controlled diffusion of proteins with different pI values across a nanochannel on a chip. Nano Lett. 2006, 6(3):543-547. 10.1021/nl052372h
    • (2006) Nano Lett. , vol.6 , Issue.3 , pp. 543-547
    • Schoch, R.B.1    Bertsch, A.2    Renaud, P.3
  • 142
    • 70349847431 scopus 로고    scopus 로고
    • Rectification, gating voltage, and interchannel communication of nanoslot arrays due to asymmetric entrance space charge polarization
    • 10.1103/PhysRevLett.103.154502
    • Yossifon G. Chang Y.-C. Chang H.-C. Rectification, gating voltage, and interchannel communication of nanoslot arrays due to asymmetric entrance space charge polarization. Phys. Rev. Lett. 2009, 103(15):154502. 10.1103/PhysRevLett.103.154502
    • (2009) Phys. Rev. Lett. , vol.103 , Issue.15 , pp. 154502
    • Yossifon, G.1    Chang, Y.-C.2    Chang, H.-C.3
  • 143
    • 79960947586 scopus 로고    scopus 로고
    • DNA tracking within a nanochannel: Device fabrication and experiments
    • 10.1039/c1lc20075e
    • Mokkapati V.R. Di Virgilio V. Shen C. Mollinger J. Bastemeijer J. Bossche A. DNA tracking within a nanochannel: Device fabrication and experiments. Lab Chip 2011, 11(16):2711-2719. 10.1039/c1lc20075e
    • (2011) Lab Chip , vol.11 , Issue.16 , pp. 2711-2719
    • Mokkapati, V.R.1    Di Virgilio, V.2    Shen, C.3    Mollinger, J.4    Bastemeijer, J.5    Bossche, A.6
  • 146
    • 34249728919 scopus 로고    scopus 로고
    • Spontaneous stretching of DNA in a two-dimensional nanoslit
    • 10.1021/nl0701861
    • Krishnan M. Monch I. Schwille P. Spontaneous stretching of DNA in a two-dimensional nanoslit. Nano Lett. 2007, 7(5):1270-1275. 10.1021/nl0701861
    • (2007) Nano Lett. , vol.7 , Issue.5 , pp. 1270-1275
    • Krishnan, M.1    Monch, I.2    Schwille, P.3
  • 149
    • 36949018390 scopus 로고    scopus 로고
    • Design and fabrication of a nanofluidic channel by selective thermal oxidation and etching back of silicon dioxide made on a silicon substrate
    • 10.1088/0960-1317/17/12/001
    • Wu C. Jin Z. Wang H. Ma H. Wang Y. Design and fabrication of a nanofluidic channel by selective thermal oxidation and etching back of silicon dioxide made on a silicon substrate. J. Micromech. Microeng. 2007, 17(12):2393-2397. 10.1088/0960-1317/17/12/001
    • (2007) J. Micromech. Microeng. , vol.17 , Issue.12 , pp. 2393-2397
    • Wu, C.1    Jin, Z.2    Wang, H.3    Ma, H.4    Wang, Y.5
  • 151
    • 79960372207 scopus 로고    scopus 로고
    • A low-voltage electrokinetic nanochannel drug delivery system
    • 10.1039/c1lc00001b
    • Fine D. Grattoni A. Zabre E. Hussein F. Ferrari M. Liu X. A low-voltage electrokinetic nanochannel drug delivery system. Lab Chip 2011, 11(15):2526-2534. 10.1039/c1lc00001b
    • (2011) Lab Chip , vol.11 , Issue.15 , pp. 2526-2534
    • Fine, D.1    Grattoni, A.2    Zabre, E.3    Hussein, F.4    Ferrari, M.5    Liu, X.6
  • 152
    • 7044265023 scopus 로고    scopus 로고
    • Nanoengineered device for drug delivery application
    • 10.1088/0957-4484/15/10/015
    • Sinha P.M. Valco G. Sharma S. Liu X. Ferrari M. Nanoengineered device for drug delivery application. Nanotechnology 2004, 15(10):S585-S589. 10.1088/0957-4484/15/10/015
    • (2004) Nanotechnology , vol.15 , Issue.10
    • Sinha, P.M.1    Valco, G.2    Sharma, S.3    Liu, X.4    Ferrari, M.5
  • 153
    • 77949342465 scopus 로고    scopus 로고
    • Fabrication of sub-10 nm planar nanofluidic channels through native oxide etch and anodic wafer bonding
    • 10.1109/TNANO.2009.2038377
    • Song C.R. Wang P.S. Fabrication of sub-10 nm planar nanofluidic channels through native oxide etch and anodic wafer bonding. IEEE Trans. Nanotechnol. 2010, 9(2):138-141. 10.1109/TNANO.2009.2038377
    • (2010) IEEE Trans. Nanotechnol. , vol.9 , Issue.2 , pp. 138-141
    • Song, C.R.1    Wang, P.S.2
  • 154
    • 1642321075 scopus 로고    scopus 로고
    • Collapse of microchannels during anodic bonding: Theory and experiments
    • 10.1063/1.1644898
    • Shih W.P. Hui C.Y. Tien N.C. Collapse of microchannels during anodic bonding: Theory and experiments. J. Appl. Phys. 2004, 95(5):2800-2808. 10.1063/1.1644898
    • (2004) J. Appl. Phys. , vol.95 , Issue.5 , pp. 2800-2808
    • Shih, W.P.1    Hui, C.Y.2    Tien, N.C.3
  • 156
    • 0031370110 scopus 로고    scopus 로고
    • Low temperature bonding for microfabrication of chemical analysis devices
    • 10.1016/S0925-4005(97)00294-3
    • Wang H.Y. Foote R.S. Jacobson S.C. Schneibel J.H. Ramsey J.M. Low temperature bonding for microfabrication of chemical analysis devices. Sens. Actuators B 1997, 45(3):199-207. 10.1016/S0925-4005(97)00294-3
    • (1997) Sens. Actuators B , vol.45 , Issue.3 , pp. 199-207
    • Wang, H.Y.1    Foote, R.S.2    Jacobson, S.C.3    Schneibel, J.H.4    Ramsey, J.M.5
  • 157
    • 34247612361 scopus 로고    scopus 로고
    • Weighing of biomolecules, single cells and single nanoparticles in fluid
    • 10.1038/nature05741
    • Burg T.P. Godin M. Knudsen S.M. Shen W. Carlson G. Foster J.S. Babcock K. Manalis S.R. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 2007, 446(7139):1066-1069. 10.1038/nature05741
    • (2007) Nature , vol.446 , Issue.7139 , pp. 1066-1069
    • Burg, T.P.1    Godin, M.2    Knudsen, S.M.3    Shen, W.4    Carlson, G.5    Foster, J.S.6    Babcock, K.7    Manalis, S.R.8
  • 158
    • 77955337633 scopus 로고    scopus 로고
    • Toward attogram mass measurements in solution with suspended nanochannel resonators
    • 10.1021/nl101107u
    • Lee J. Shen W. Payer K. Burg T.P. Manalis S.R. Toward attogram mass measurements in solution with suspended nanochannel resonators. Nano Lett. 2010, 10(7):2537-2542. 10.1021/nl101107u
    • (2010) Nano Lett. , vol.10 , Issue.7 , pp. 2537-2542
    • Lee, J.1    Shen, W.2    Payer, K.3    Burg, T.P.4    Manalis, S.R.5
  • 159
    • 0035868020 scopus 로고    scopus 로고
    • A simplified model for glass dissolution in water
    • 10.1023/A:1017591100985
    • Devreux F. Barboux P. Filoche M. Sapoval B. A simplified model for glass dissolution in water. J. Mater. Sci. 2001, 36(6):1331-1341. 10.1023/A:1017591100985
    • (2001) J. Mater. Sci. , vol.36 , Issue.6 , pp. 1331-1341
    • Devreux, F.1    Barboux, P.2    Filoche, M.3    Sapoval, B.4
  • 160
    • 0036883109 scopus 로고    scopus 로고
    • Fabrication of flexible polymer tubes for micro and nanofluidic applications
    • 10.1116/1.1526356
    • Ilic B. Czaplewski D. Zalalutdinov M. Schmidt B. Craighead H.G. Fabrication of flexible polymer tubes for micro and nanofluidic applications. J. Vac. Sci. Technol. B 2002, 20(6):2459-2465. 10.1116/1.1526356
    • (2002) J. Vac. Sci. Technol. B , vol.20 , Issue.6 , pp. 2459-2465
    • Ilic, B.1    Czaplewski, D.2    Zalalutdinov, M.3    Schmidt, B.4    Craighead, H.G.5
  • 161
    • 33947531758 scopus 로고    scopus 로고
    • Fabrication of self-sealed circular nano/microfluidic channels in glass substrates
    • 10.1088/0957-4484/18/13/135304
    • Wong C.C. Agarwal A. Balasubramanian N. Kwong D.L. Fabrication of self-sealed circular nano/microfluidic channels in glass substrates. Nanotechnology 2007, 18(13):135304. 10.1088/0957-4484/18/13/135304
    • (2007) Nanotechnology , vol.18 , Issue.13 , pp. 135304
    • Wong, C.C.1    Agarwal, A.2    Balasubramanian, N.3    Kwong, D.L.4
  • 162
    • 34547579903 scopus 로고    scopus 로고
    • Conformal metal thin-film coatings in high-aspect-ratio trenches using a self-sputtered rf-driven plasma source
    • 10.1116/1.2749527
    • Ji L. Kim J.K. Ji Q. Leung K.N. Chen Y. Gough R.A. Conformal metal thin-film coatings in high-aspect-ratio trenches using a self-sputtered rf-driven plasma source. J. Vac. Sci. Technol. B 2007, 25(4):1227-1230. 10.1116/1.2749527
    • (2007) J. Vac. Sci. Technol. B , vol.25 , Issue.4 , pp. 1227-1230
    • Ji, L.1    Kim, J.K.2    Ji, Q.3    Leung, K.N.4    Chen, Y.5    Gough, R.A.6
  • 163
    • 59649103650 scopus 로고    scopus 로고
    • Massively-parallel ultra-high-aspect-ratio nanochannels as mesoporous membranes
    • 10.1039/b809370a
    • Mao P. Han J. Massively-parallel ultra-high-aspect-ratio nanochannels as mesoporous membranes. Lab Chip 2009, 9(4):586-591. 10.1039/b809370a
    • (2009) Lab Chip , vol.9 , Issue.4 , pp. 586-591
    • Mao, P.1    Han, J.2
  • 164
    • 0035906180 scopus 로고    scopus 로고
    • Fabrication of nanometer-scale features by controlled isotropic wet chemical etching
    • 10.1002/1521-4095(200104)13:8<604::AID-ADMA604>3.0.CO;2-J
    • Love J.C. Paul K.E. Whitesides G.M. Fabrication of nanometer-scale features by controlled isotropic wet chemical etching. Adv. Mater. 2001, 13(8):604-607. 10.1002/1521-4095(200104)13:8<604::AID-ADMA604>3.0.CO;2-J
    • (2001) Adv. Mater. , vol.13 , Issue.8 , pp. 604-607
    • Love, J.C.1    Paul, K.E.2    Whitesides, G.M.3
  • 165
    • 34548679169 scopus 로고    scopus 로고
    • High aspect ratio silicon nanomoulds for UV embossing fabricated by directional thermal oxidation using an oxidation mask
    • 10.1088/0957-4484/18/35/355307
    • Chen L.Q. Chan-Park M.B. Yan Y.H. Zhang Q. Li C.M. Zhang J. High aspect ratio silicon nanomoulds for UV embossing fabricated by directional thermal oxidation using an oxidation mask. Nanotechnology 2007, 18(35):355307. 10.1088/0957-4484/18/35/355307
    • (2007) Nanotechnology , vol.18 , Issue.35 , pp. 355307
    • Chen, L.Q.1    Chan-Park, M.B.2    Yan, Y.H.3    Zhang, Q.4    Li, C.M.5    Zhang, J.6
  • 166
    • 42549105557 scopus 로고    scopus 로고
    • The residual pattern of double thin-film over-etching for the fabrication of continuous patterns with dimensions varying from 50 nm to millimeters over a large area
    • 10.1088/0957-4484/19/15/155301
    • Chen L.Q. Chan-Park M.B. Yang C. Zhang Q. The residual pattern of double thin-film over-etching for the fabrication of continuous patterns with dimensions varying from 50 nm to millimeters over a large area. Nanotechnology 2008, 19(15):155301. 10.1088/0957-4484/19/15/155301
    • (2008) Nanotechnology , vol.19 , Issue.15 , pp. 155301
    • Chen, L.Q.1    Chan-Park, M.B.2    Yang, C.3    Zhang, Q.4
  • 167
    • 84859329902 scopus 로고    scopus 로고
    • Wafer-scale fabrication of high-aspect ratio nanochannels based on edge-lithography technique
    • 10.1063/1.3683164
    • Xie Q. Zhou Q. Xie F. Sang J. Wang W. Zhang H.A. Wu W. Li Z. Wafer-scale fabrication of high-aspect ratio nanochannels based on edge-lithography technique. Biomicrofluidics 2012, 6(1):016502. 10.1063/1.3683164
    • (2012) Biomicrofluidics , vol.6 , Issue.1 , pp. 016502
    • Xie, Q.1    Zhou, Q.2    Xie, F.3    Sang, J.4    Wang, W.5    Zhang, H.A.6    Wu, W.7    Li, Z.8
  • 168
    • 77957839074 scopus 로고    scopus 로고
    • Fabrication of high-compact nanowires using alternating photoresist ashing and spacer technology
    • 10.1088/0960-1317/20/8/085029
    • Mao H.Y. Wu W.G. Zhang Y.L. Zhai G. Xu J. Fabrication of high-compact nanowires using alternating photoresist ashing and spacer technology. J. Micromech. Microeng. 2010, 20(8):085029. 10.1088/0960-1317/20/8/085029
    • (2010) J. Micromech. Microeng. , vol.20 , Issue.8 , pp. 085029
    • Mao, H.Y.1    Wu, W.G.2    Zhang, Y.L.3    Zhai, G.4    Xu, J.5
  • 169
    • 79955792675 scopus 로고    scopus 로고
    • Removal of endotoxin from deionized water using micromachined silicon nanopore membranes
    • 10.1088/0960-1317/21/5/054029
    • Smith R.A. Goldman K. Fissell W.H. Fleischman A.J. Zorman C.A. Roy S. Removal of endotoxin from deionized water using micromachined silicon nanopore membranes. J. Micromech. Microeng. 2011, 21(5):054029. 10.1088/0960-1317/21/5/054029
    • (2011) J. Micromech. Microeng. , vol.21 , Issue.5 , pp. 054029
    • Smith, R.A.1    Goldman, K.2    Fissell, W.H.3    Fleischman, A.J.4    Zorman, C.A.5    Roy, S.6
  • 170
    • 0242351073 scopus 로고    scopus 로고
    • A nanochannel fabrication technique without nanolithography
    • 10.1021/nl034399b
    • Lee C. Yang E.H. Myung N.V. George T. A nanochannel fabrication technique without nanolithography. Nano Lett. 2003, 3(10):1339-1340. 10.1021/nl034399b
    • (2003) Nano Lett. , vol.3 , Issue.10 , pp. 1339-1340
    • Lee, C.1    Yang, E.H.2    Myung, N.V.3    George, T.4
  • 171
  • 172
    • 84867493779 scopus 로고    scopus 로고
    • Logic gates based on ion transistors
    • 10.1038/ncomms1869
    • Tybrandt K. Forchheimer R. Berggren M. Logic gates based on ion transistors. Nat. Commun. 2012, 3:871. 10.1038/ncomms1869
    • (2012) Nat. Commun. , vol.3 , pp. 871
    • Tybrandt, K.1    Forchheimer, R.2    Berggren, M.3
  • 173
    • 84862854762 scopus 로고    scopus 로고
    • Ion diode logics for pH control
    • 10.1039/c2lc40093f
    • Gabrielsson E.O. Tybrandt K. Berggren M. Ion diode logics for pH control. Lab Chip 2012, 12(14):2507-2513. 10.1039/c2lc40093f
    • (2012) Lab Chip , vol.12 , Issue.14 , pp. 2507-2513
    • Gabrielsson, E.O.1    Tybrandt, K.2    Berggren, M.3
  • 174
    • 80052789956 scopus 로고    scopus 로고
    • Optofluidic in situ maskless lithography of charge selective nanoporous hydrogel for DNA preconcentration
    • 10.1063/1.3516037
    • Kim H. Kim J. Kim E.G. Heinz A.J. Kwon S. Chun H. Optofluidic in situ maskless lithography of charge selective nanoporous hydrogel for DNA preconcentration. Biomicrofluidics 2010, 4(4):043014. 10.1063/1.3516037
    • (2010) Biomicrofluidics , vol.4 , Issue.4 , pp. 043014
    • Kim, H.1    Kim, J.2    Kim, E.G.3    Heinz, A.J.4    Kwon, S.5    Chun, H.6
  • 175
    • 74849121729 scopus 로고    scopus 로고
    • Stabilization of ion concentration polarization using a heterogeneous nanoporous junction
    • 10.1021/nl9023319
    • Kim P. Kim S.J. Han J. Suh K.Y. Stabilization of ion concentration polarization using a heterogeneous nanoporous junction. Nano Lett. 2010, 10(1):16-23. 10.1021/nl9023319
    • (2010) Nano Lett. , vol.10 , Issue.1 , pp. 16-23
    • Kim, P.1    Kim, S.J.2    Han, J.3    Suh, K.Y.4
  • 176
    • 84855265956 scopus 로고    scopus 로고
    • Microscale pH regulation by splitting water
    • 10.1063/1.3657928
    • Cheng L.J. Chang H.C. Microscale pH regulation by splitting water. Biomicrofluidics 2011, 5(4):046502. 10.1063/1.3657928
    • (2011) Biomicrofluidics , vol.5 , Issue.4 , pp. 046502
    • Cheng, L.J.1    Chang, H.C.2
  • 177
    • 81955164189 scopus 로고    scopus 로고
    • Electrochemical activation and inhibition of neuromuscular systems through modulation of ion concentrations with ion-selective membranes
    • 10.1038/nmat3146
    • Song Y.A. Melik R. Rabie A.N. Ibrahim A.M. S. Moses D. Tan A. Han J. Lin S.J. Electrochemical activation and inhibition of neuromuscular systems through modulation of ion concentrations with ion-selective membranes. Nature Mater. 2011, 10:980-986. 10.1038/nmat3146
    • (2011) Nature Mater. , vol.10 , pp. 980-986
    • Song, Y.A.1    Melik, R.2    Rabie, A.N.3    Ibrahim, A.M.S.4    Moses, D.5    Tan, A.6    Han, J.7    Lin, S.J.8
  • 178
    • 33747274301 scopus 로고    scopus 로고
    • Novel modification of Nafion®117 for a MEMS-based micro direct methanol fuel cell (μDMFC)
    • 10.1088/0960-1317/16/9/S09
    • Liu X. Suo C. Zhang Y. Wang X. Sun C. Li L. Zhang L. Novel modification of Nafion®117 for a MEMS-based micro direct methanol fuel cell (μDMFC). J. Micromech. Microeng. 2006, 16(9):S226-S232. 10.1088/0960-1317/16/9/S09
    • (2006) J. Micromech. Microeng. , vol.16 , Issue.9
    • Liu, X.1    Suo, C.2    Zhang, Y.3    Wang, X.4    Sun, C.5    Li, L.6    Zhang, L.7
  • 179
    • 42949144144 scopus 로고    scopus 로고
    • Self-sealed vertical polymeric nanoporous-junctions for high-throughput nanofluidic applications
    • 10.1021/ac800157q
    • Kim S.J. Han J. Self-sealed vertical polymeric nanoporous-junctions for high-throughput nanofluidic applications. Anal. Chem. 2008, 80(9):3507-3511. 10.1021/ac800157q
    • (2008) Anal. Chem. , vol.80 , Issue.9 , pp. 3507-3511
    • Kim, S.J.1    Han, J.2
  • 180
    • 41149176123 scopus 로고    scopus 로고
    • Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane
    • 10.1039/b717900f
    • Lee J.H. Song Y.A. Han J. Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane. Lab Chip 2008, 8(4):596-601. 10.1039/b717900f
    • (2008) Lab Chip , vol.8 , Issue.4 , pp. 596-601
    • Lee, J.H.1    Song, Y.A.2    Han, J.3
  • 181
    • 84862833608 scopus 로고    scopus 로고
    • Continuous-flow biomolecule and cell concentrator by ion concentration polarization
    • 10.1021/ac2012619
    • Kwak R. Kim S.J. Han J. Continuous-flow biomolecule and cell concentrator by ion concentration polarization. Anal. Chem. 2011, 83(19):7348-7355. 10.1021/ac2012619
    • (2011) Anal. Chem. , vol.83 , Issue.19 , pp. 7348-7355
    • Kwak, R.1    Kim, S.J.2    Han, J.3
  • 182
    • 77957601332 scopus 로고    scopus 로고
    • Concentration-enhanced rapid detection of human chorionic gonadotropin (hCG) on a Au surface using a nanofluidic preconcentrator
    • 10.1007/s10404-010-0598-z
    • Lee J.H. Han J. Concentration-enhanced rapid detection of human chorionic gonadotropin (hCG) on a Au surface using a nanofluidic preconcentrator. Microfluid. Nanofluid. 2010, 9(4):973-979. 10.1007/s10404-010-0598-z
    • (2010) Microfluid. Nanofluid. , vol.9 , Issue.4 , pp. 973-979
    • Lee, J.H.1    Han, J.2
  • 183
    • 79952664169 scopus 로고    scopus 로고
    • Massively parallel concentration device for multiplexed immunoassays
    • 10.1039/c0lc00349b
    • Ko S.H. Kim S.J. Cheow L.F. Li L.D. Kang K.H. Han J. Massively parallel concentration device for multiplexed immunoassays. Lab Chip 2011, 11(7):1351-1358. 10.1039/c0lc00349b
    • (2011) Lab Chip , vol.11 , Issue.7 , pp. 1351-1358
    • Ko, S.H.1    Kim, S.J.2    Cheow, L.F.3    Li, L.D.4    Kang, K.H.5    Han, J.6
  • 184
    • 79960368358 scopus 로고    scopus 로고
    • Non-linear and linear enhancement of enzymatic reaction kinetics using a biomolecule concentrator
    • 10.1039/c0lc00588f
    • Sarkar A. Han J. Non-linear and linear enhancement of enzymatic reaction kinetics using a biomolecule concentrator. Lab Chip 2011, 11(15):2569-2576. 10.1039/c0lc00588f
    • (2011) Lab Chip , vol.11 , Issue.15 , pp. 2569-2576
    • Sarkar, A.1    Han, J.2
  • 185
    • 80052795523 scopus 로고    scopus 로고
    • Continuous signal enhancement for sensitive aptamer affinity probe electrophoresis assay using electrokinetic concentration
    • 10.1021/ac201307d
    • Cheow L.F. Han J. Continuous signal enhancement for sensitive aptamer affinity probe electrophoresis assay using electrokinetic concentration. Anal. Chem. 2011, 83(18):7086-7093. 10.1021/ac201307d
    • (2011) Anal. Chem. , vol.83 , Issue.18 , pp. 7086-7093
    • Cheow, L.F.1    Han, J.2
  • 186
    • 79955949019 scopus 로고    scopus 로고
    • A polymeric high-throughput pressure-driven micromixer using a nanoporous membrane
    • 10.1007/s10404-010-0685-1
    • Jännig O. Nguyen N.-T. A polymeric high-throughput pressure-driven micromixer using a nanoporous membrane. Microfluid. Nanofluid. 2010, 10(3):513-519. 10.1007/s10404-010-0685-1
    • (2010) Microfluid. Nanofluid. , vol.10 , Issue.3 , pp. 513-519
    • Jännig, O.1    Nguyen, N.-T.2
  • 188
    • 34250756468 scopus 로고    scopus 로고
    • SiO2-coated porous anodic alumina membranes for high flow rate electroosmotic pumping
    • 10.1088/0957-4484/18/27/275705
    • Vajandar S.K. Xu D. Markov D.A. Wikswo J.P. Hofmeister W. Li D. SiO2-coated porous anodic alumina membranes for high flow rate electroosmotic pumping. Nanotechnology 2007, 18(27):275705. 10.1088/0957-4484/18/27/275705
    • (2007) Nanotechnology , vol.18 , Issue.27 , pp. 275705
    • Vajandar, S.K.1    Xu, D.2    Markov, D.A.3    Wikswo, J.P.4    Hofmeister, W.5    Li, D.6
  • 189
    • 63649138398 scopus 로고    scopus 로고
    • A pH-tunable nanofluidic diode with a broad range of rectifying properties
    • 10.1021/nn900039f
    • Ali M. Ramirez P. Mafe S. Neumann R. Ensinger W. A pH-tunable nanofluidic diode with a broad range of rectifying properties. ACS Nano 2009, 3(3):603-608. 10.1021/nn900039f
    • (2009) ACS Nano , vol.3 , Issue.3 , pp. 603-608
    • Ali, M.1    Ramirez, P.2    Mafe, S.3    Neumann, R.4    Ensinger, W.5
  • 191
    • 0542446392 scopus 로고    scopus 로고
    • On the growth of highly ordered pores in anodized aluminum Oxide
    • 10.1021/cm980163a
    • Li F. Zhang L. Metzger R.M. On the growth of highly ordered pores in anodized aluminum Oxide. Chem. Mater. 1998, 10(9):2470-2480. 10.1021/cm980163a
    • (1998) Chem. Mater. , vol.10 , Issue.9 , pp. 2470-2480
    • Li, F.1    Zhang, L.2    Metzger, R.M.3
  • 192
    • 70350686765 scopus 로고    scopus 로고
    • A label-free porous alumina interferometric immunosensor
    • 10.1021/nn900825q
    • Alvarez S.D. Li C.P. Chiang C.E. Schuller I.K. Sailor M.J. A label-free porous alumina interferometric immunosensor. ACS Nano 2009, 3(10):3301-3307. 10.1021/nn900825q
    • (2009) ACS Nano , vol.3 , Issue.10 , pp. 3301-3307
    • Alvarez, S.D.1    Li, C.P.2    Chiang, C.E.3    Schuller, I.K.4    Sailor, M.J.5
  • 193
    • 66949136752 scopus 로고    scopus 로고
    • Label-free DNA sensor based on surface charge modulated ionic conductance
    • 10.1021/nn900113x
    • Wang X. Smirnov S. Label-free DNA sensor based on surface charge modulated ionic conductance. ACS Nano 2009, 3(4):1004-1010. 10.1021/nn900113x
    • (2009) ACS Nano , vol.3 , Issue.4 , pp. 1004-1010
    • Wang, X.1    Smirnov, S.2
  • 194
    • 78649611228 scopus 로고    scopus 로고
    • A nanochannel array-based electrochemical device for quantitative label-free DNA analysis
    • 10.1021/nn101050r
    • Li S.J. Li J. Wang K. Wang C. Xu J.J. Chen H.Y. Xia X.H. Huo Q. A nanochannel array-based electrochemical device for quantitative label-free DNA analysis. ACS Nano 2010, 4(11):6417-6424. 10.1021/nn101050r
    • (2010) ACS Nano , vol.4 , Issue.11 , pp. 6417-6424
    • Li, S.J.1    Li, J.2    Wang, K.3    Wang, C.4    Xu, J.J.5    Chen, H.Y.6    Xia, X.H.7    Huo, Q.8
  • 195
    • 79952119256 scopus 로고    scopus 로고
    • A polyethylene oxide-functionalized self-organized alumina nanochannel array for an immunoprotection biofilter
    • 10.1039/c0lc00499e
    • Lee S. Park M. Park H.S. Kim Y. Cho S. Cho J.H. Park J. Hwang W. A polyethylene oxide-functionalized self-organized alumina nanochannel array for an immunoprotection biofilter. Lab Chip 2011, 11(6):1049-1053. 10.1039/c0lc00499e
    • (2011) Lab Chip , vol.11 , Issue.6 , pp. 1049-1053
    • Lee, S.1    Park, M.2    Park, H.S.3    Kim, Y.4    Cho, S.5    Cho, J.H.6    Park, J.7    Hwang, W.8
  • 196
    • 37149048114 scopus 로고    scopus 로고
    • Micropumps based on the enhanced electroosmotic effect of aluminum oxide membranes
    • 10.1002/adma.200700767
    • Miao J.Y. Xu Z.L. Zhang X.Y. Wang N. Yang Z.Y. Sheng P. Micropumps based on the enhanced electroosmotic effect of aluminum oxide membranes. Adv. Mater. 2007, 19(23):4234-4237. 10.1002/adma.200700767
    • (2007) Adv. Mater. , vol.19 , Issue.23 , pp. 4234-4237
    • Miao, J.Y.1    Xu, Z.L.2    Zhang, X.Y.3    Wang, N.4    Yang, Z.Y.5    Sheng, P.6
  • 197
    • 46949085485 scopus 로고    scopus 로고
    • Low-voltage electroosmotic pumping using porous anodic alumina membranes
    • 10.1007/s10404-007-0242-8
    • Chen Y.-F. Li M.-C. Hu Y.-H. Chang W.-J. Wang C.-C. Low-voltage electroosmotic pumping using porous anodic alumina membranes. Microfluid. Nanofluid. 2007, 5(2):235-244. 10.1007/s10404-007-0242-8
    • (2007) Microfluid. Nanofluid. , vol.5 , Issue.2 , pp. 235-244
    • Chen, Y.-F.1    Li, M.-C.2    Hu, Y.-H.3    Chang, W.-J.4    Wang, C.-C.5
  • 198
    • 48249123193 scopus 로고    scopus 로고
    • High speed fabrication of aluminum nanostructures with 10 nm spatial resolution by electrochemical replication
    • 10.1088/0957-4484/19/35/355302
    • Biring S. Tsai K.T. Sur U.K. Wang Y.L. High speed fabrication of aluminum nanostructures with 10 nm spatial resolution by electrochemical replication. Nanotechnology 2008, 19(35):355302. 10.1088/0957-4484/19/35/355302
    • (2008) Nanotechnology , vol.19 , Issue.35 , pp. 355302
    • Biring, S.1    Tsai, K.T.2    Sur, U.K.3    Wang, Y.L.4
  • 199
    • 84862874772 scopus 로고    scopus 로고
    • A facile route for the fabrication of large-scale gate-all-around nanofluidic field-effect transistors with low leakage current
    • 10.1039/c2lc40112f
    • Shin S. Kim B.S. Song J. Lee H. Cho H.H. A facile route for the fabrication of large-scale gate-all-around nanofluidic field-effect transistors with low leakage current. Lab Chip 2012, 12(14):2568-2574. 10.1039/c2lc40112f
    • (2012) Lab Chip , vol.12 , Issue.14 , pp. 2568-2574
    • Shin, S.1    Kim, B.S.2    Song, J.3    Lee, H.4    Cho, H.H.5
  • 200
    • 0003068498 scopus 로고    scopus 로고
    • Periodic holes with 10 nm diameter produced by grazing Ar+ milling of the barrier laver in hexagonally ordered nanoporous alumina
    • 10.1021/nl010075g
    • Xu T. Zangari G. Metzger R.M. Periodic holes with 10 nm diameter produced by grazing Ar+ milling of the barrier laver in hexagonally ordered nanoporous alumina. Nano Lett. 2002, 2(1):37-41. 10.1021/nl010075g
    • (2002) Nano Lett. , vol.2 , Issue.1 , pp. 37-41
    • Xu, T.1    Zangari, G.2    Metzger, R.M.3
  • 201
    • 84866508696 scopus 로고    scopus 로고
    • A novel self-ordered sub-10 nm nanopore template for nanotechnology
    • 10.1002/adma.201200648
    • Moyen E. Santinacci L. Masson L. Wulfhekel W. Hanbucken M. A novel self-ordered sub-10 nm nanopore template for nanotechnology. Adv. Mater. 2012, 24(7):5094-5098. 10.1002/adma.201200648
    • (2012) Adv. Mater. , vol.24 , Issue.7 , pp. 5094-5098
    • Moyen, E.1    Santinacci, L.2    Masson, L.3    Wulfhekel, W.4    Hanbucken, M.5
  • 202
    • 0035272696 scopus 로고    scopus 로고
    • Fabrication of ideally ordered anodic porous alumina with 63 nm hole periodicity using sulfuric acid
    • 10.1116/1.1347039
    • Asoh H. Nishio K. Nakao M. Yokoo A. Tamamura T. Masuda H. Fabrication of ideally ordered anodic porous alumina with 63 nm hole periodicity using sulfuric acid. J. Vac. Sci. Technol. B 2001, 19(2):569-572. 10.1116/1.1347039
    • (2001) J. Vac. Sci. Technol. B , vol.19 , Issue.2 , pp. 569-572
    • Asoh, H.1    Nishio, K.2    Nakao, M.3    Yokoo, A.4    Tamamura, T.5    Masuda, H.6
  • 203
    • 0012533452 scopus 로고    scopus 로고
    • Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces
    • 10.1063/1.1335543
    • Liu C.Y. Datta A. Wang Y.L. Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces. Appl. Phys. Lett. 2001, 78(1):120-122. 10.1063/1.1335543
    • (2001) Appl. Phys. Lett. , vol.78 , Issue.1 , pp. 120-122
    • Liu, C.Y.1    Datta, A.2    Wang, Y.L.3
  • 204
    • 31144467808 scopus 로고    scopus 로고
    • Ideally ordered 10 nm channel arrays grown by anodization of focused-ion-beam patterned aluminum
    • 10.1116/1.1884123
    • Peng C.Y. Liu C.Y. Liu N.W. Wang H.H. Datta A. Wang Y.L. Ideally ordered 10 nm channel arrays grown by anodization of focused-ion-beam patterned aluminum. J. Vac. Sci. Technol. B 2005, 23(2):559-562. 10.1116/1.1884123
    • (2005) J. Vac. Sci. Technol. B , vol.23 , Issue.2 , pp. 559-562
    • Peng, C.Y.1    Liu, C.Y.2    Liu, N.W.3    Wang, H.H.4    Datta, A.5    Wang, Y.L.6
  • 205
    • 0037463241 scopus 로고    scopus 로고
    • High-speed focused-ion-beam patterning for guiding the growth of anodic alumina nanochannel arrays
    • 10.1063/1.1555689
    • Liu N.W. Datta A. Liu C.Y. Wang Y.L. High-speed focused-ion-beam patterning for guiding the growth of anodic alumina nanochannel arrays. Appl. Phys. Lett. 2003, 82(8):1281-1283. 10.1063/1.1555689
    • (2003) Appl. Phys. Lett. , vol.82 , Issue.8 , pp. 1281-1283
    • Liu, N.W.1    Datta, A.2    Liu, C.Y.3    Wang, Y.L.4
  • 206
    • 13844297509 scopus 로고    scopus 로고
    • Fabrication of anodic-alumina films with custom-designed arrays of nanochannels
    • 10.1002/adma.200400380
    • Liu N.W. Datta A. Liu C.Y. Peng C.Y. Wang H.H. Wang Y.L. Fabrication of anodic-alumina films with custom-designed arrays of nanochannels. Adv. Mater. 2005, 17(2):222-225. 10.1002/adma.200400380
    • (2005) Adv. Mater. , vol.17 , Issue.2 , pp. 222-225
    • Liu, N.W.1    Datta, A.2    Liu, C.Y.3    Peng, C.Y.4    Wang, H.H.5    Wang, Y.L.6
  • 207
    • 54949155526 scopus 로고    scopus 로고
    • Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements
    • 10.1002/adma.200702604
    • Liu N.W. Liu C.Y. Wang H.H. Hsu C.F. Lai M.Y. Chuang T.H. Wang Y.L. Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements. Adv. Mater. 2008, 20(13):2547-2551. 10.1002/adma.200702604
    • (2008) Adv. Mater. , vol.20 , Issue.13 , pp. 2547-2551
    • Liu, N.W.1    Liu, C.Y.2    Wang, H.H.3    Hsu, C.F.4    Lai, M.Y.5    Chuang, T.H.6    Wang, Y.L.7
  • 208
    • 0034742386 scopus 로고    scopus 로고
    • Track etching technique in membrane technology
    • 10.1016/S1350-4487(01)00228-1
    • Apel P.Y. Track etching technique in membrane technology. Radiat. Meas. 2001, 34:559-566. 10.1016/S1350-4487(01)00228-1
    • (2001) Radiat. Meas. , vol.34 , pp. 559-566
    • Apel, P.Y.1
  • 209
    • 84877654028 scopus 로고    scopus 로고
    • Ph.D. dissertation, der Technischen Universitat Darmstadt.
    • Ali M. 2009, Ph.D. dissertation, der Technischen Universitat Darmstadt.
    • (2009)
    • Ali, M.1
  • 210
    • 80755146142 scopus 로고    scopus 로고
    • Bio-inspired smart gating nanochannels based on polymer films
    • 10.1007/s11426-011-4324-9
    • Wen L. Jiang L. Bio-inspired smart gating nanochannels based on polymer films. Sci. China Chem. 2011, 54(10):1537-1546. 10.1007/s11426-011-4324-9
    • (2011) Sci. China Chem. , vol.54 , Issue.10 , pp. 1537-1546
    • Wen, L.1    Jiang, L.2
  • 211
    • 84877682067 scopus 로고    scopus 로고
    • Micro- and nanoporous materials produced using accelerated heavy ion beams
    • 10.1088/2043-6262/2/1/013002
    • Apel P.Y. Dmitriev S.N. Micro- and nanoporous materials produced using accelerated heavy ion beams. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2011, 2(1):013002. 10.1088/2043-6262/2/1/013002
    • (2011) Adv. Nat. Sci.: Nanosci. Nanotechnol. , vol.2 , Issue.1 , pp. 013002
    • Apel, P.Y.1    Dmitriev, S.N.2
  • 212
    • 0035498751 scopus 로고    scopus 로고
    • Diode-like single-ion track membrane prepared by electro-stopping
    • 10.1016/S0168-583X(01)00722-4
    • Apel P.Y. Korchev Y.E. Siwy Z.S. Spohr R. Yoshida M. Diode-like single-ion track membrane prepared by electro-stopping. Nucl. Instrum. Methods Phys. Res. B 2001, 184(3):337-346. 10.1016/S0168-583X(01)00722-4
    • (2001) Nucl. Instrum. Methods Phys. Res. B , vol.184 , Issue.3 , pp. 337-346
    • Apel, P.Y.1    Korchev, Y.E.2    Siwy, Z.S.3    Spohr, R.4    Yoshida, M.5
  • 213
    • 34547162996 scopus 로고    scopus 로고
    • Fabrication of nanopores in polymer foils with surfactant-controlled longitudinal profiles
    • 10.1088/0957-4484/18/30/305302
    • Apel P.Y. Blonskaya I.V. Dmitriev S.N. Orelovitch O.L. Presz A. Sartowska B.A. Fabrication of nanopores in polymer foils with surfactant-controlled longitudinal profiles. Nanotechnology 2007, 18(30):305302. 10.1088/0957-4484/18/30/305302
    • (2007) Nanotechnology , vol.18 , Issue.30 , pp. 305302
    • Apel, P.Y.1    Blonskaya, I.V.2    Dmitriev, S.N.3    Orelovitch, O.L.4    Presz, A.5    Sartowska, B.A.6
  • 214
    • 84861047535 scopus 로고    scopus 로고
    • Asymmetric ion track nanopores for sensor technology. Reconstruction of pore profile from conductometric measurements
    • 10.1088/0957-4484/23/22/225503
    • Apel P.Y. Blonskaya I.V. Orelovitch O.L. Sartowska B.A. Spohr R. Asymmetric ion track nanopores for sensor technology. Reconstruction of pore profile from conductometric measurements. Nanotechnology 2012, 23(22):225503. 10.1088/0957-4484/23/22/225503
    • (2012) Nanotechnology , vol.23 , Issue.22 , pp. 225503
    • Apel, P.Y.1    Blonskaya, I.V.2    Orelovitch, O.L.3    Sartowska, B.A.4    Spohr, R.5
  • 215
    • 0001511746 scopus 로고    scopus 로고
    • Size-based protein separations in poly(ethylene glycol)-derivatized gold nanotubule membranes
    • 10.1021/nl010044l
    • Yu S.F. Lee S.B. Kang M. Martin C.R. Size-based protein separations in poly(ethylene glycol)-derivatized gold nanotubule membranes. Nano Lett. 2001, 1(9):495-498. 10.1021/nl010044l
    • (2001) Nano Lett. , vol.1 , Issue.9 , pp. 495-498
    • Yu, S.F.1    Lee, S.B.2    Kang, M.3    Martin, C.R.4
  • 216
    • 70249118549 scopus 로고    scopus 로고
    • Three-dimensional integrated microfluidic architectures enabled through electrically switchable nanocapillary array membranes
    • 10.1063/1.2732208
    • Gatimu E.N. King T.L. Sweedler J.V. Bohn P.W. Three-dimensional integrated microfluidic architectures enabled through electrically switchable nanocapillary array membranes. Biomicrofluidics 2007, 1(2):021502. 10.1063/1.2732208
    • (2007) Biomicrofluidics , vol.1 , Issue.2 , pp. 021502
    • Gatimu, E.N.1    King, T.L.2    Sweedler, J.V.3    Bohn, P.W.4
  • 217
    • 52649169925 scopus 로고    scopus 로고
    • Ionic current rectification at a nanofluidic/microfluidic interface with an asymmetric microfluidic system
    • 10.1039/b808179d
    • Miller S.A. Kelly K.C. Timperman A.T. Ionic current rectification at a nanofluidic/microfluidic interface with an asymmetric microfluidic system. Lab Chip 2008, 8(10):1729-1732. 10.1039/b808179d
    • (2008) Lab Chip , vol.8 , Issue.10 , pp. 1729-1732
    • Miller, S.A.1    Kelly, K.C.2    Timperman, A.T.3
  • 219
    • 84855918919 scopus 로고    scopus 로고
    • Measurements of the ion-depletion zone evolution in a micro/nano-channel
    • 10.1007/s10404-011-0828-z
    • Yu Q. Silber-Li Z. Measurements of the ion-depletion zone evolution in a micro/nano-channel. Microfluid. Nanofluid. 2011, 11(5):623-631. 10.1007/s10404-011-0828-z
    • (2011) Microfluid. Nanofluid. , vol.11 , Issue.5 , pp. 623-631
    • Yu, Q.1    Silber-Li, Z.2
  • 220
    • 34047190449 scopus 로고    scopus 로고
    • Nanofluidic diode
    • 10.1021/nl062924b
    • Vlassiouk I. Siwy Z.S. Nanofluidic diode. Nano Lett. 2007, 7(3):552-556. 10.1021/nl062924b
    • (2007) Nano Lett. , vol.7 , Issue.3 , pp. 552-556
    • Vlassiouk, I.1    Siwy, Z.S.2
  • 221
    • 67650293614 scopus 로고    scopus 로고
    • Surface charge density of the track-etched nanopores in polyethylene terephthalate foils
    • 10.1063/1.3130988
    • Xue J. Xie Y. Yan Y. Ke J. Wang Y. Surface charge density of the track-etched nanopores in polyethylene terephthalate foils. Biomicrofluidics 2009, 3(2):022408. 10.1063/1.3130988
    • (2009) Biomicrofluidics , vol.3 , Issue.2 , pp. 022408
    • Xue, J.1    Xie, Y.2    Yan, Y.3    Ke, J.4    Wang, Y.5
  • 222
    • 66449083774 scopus 로고    scopus 로고
    • Squeezing ionic liquids through nanopores
    • 10.1021/nl900630z
    • Davenport M. Rodriguez A. Shea K.J. Siwy Z.S. Squeezing ionic liquids through nanopores. Nano Lett. 2009, 9(5):2125-2128. 10.1021/nl900630z
    • (2009) Nano Lett. , vol.9 , Issue.5 , pp. 2125-2128
    • Davenport, M.1    Rodriguez, A.2    Shea, K.J.3    Siwy, Z.S.4
  • 223
    • 67650513288 scopus 로고    scopus 로고
    • Biosensing with nanofluidic diodes
    • 10.1021/ja901120f
    • Vlassiouk I. Kozel T.R. Siwy Z.S. Biosensing with nanofluidic diodes. J. Am. Chem. Soc. 2009, 131(23):8211-8220. 10.1021/ja901120f
    • (2009) J. Am. Chem. Soc. , vol.131 , Issue.23 , pp. 8211-8220
    • Vlassiouk, I.1    Kozel, T.R.2    Siwy, Z.S.3
  • 224
    • 84856334864 scopus 로고    scopus 로고
    • Selective discrimination of small hydrophobic biomolecules based on ion-current rectification in conically shaped nanochannel
    • 10.1016/j.talanta.2011.12.022
    • Guo Z. Wang J. Wang E. Selective discrimination of small hydrophobic biomolecules based on ion-current rectification in conically shaped nanochannel. Talanta 2012, 89:253-257. 10.1016/j.talanta.2011.12.022
    • (2012) Talanta , vol.89 , pp. 253-257
    • Guo, Z.1    Wang, J.2    Wang, E.3
  • 225
    • 1642528419 scopus 로고    scopus 로고
    • An asymmetric polymer nanopore for single molecule detection
    • 10.1021/nl035141o
    • Mara A. Siwy Z.S. Trautmann C. Wan J. Kamme F. An asymmetric polymer nanopore for single molecule detection. Nano Lett. 2004, 4(3):497-501. 10.1021/nl035141o
    • (2004) Nano Lett. , vol.4 , Issue.3 , pp. 497-501
    • Mara, A.1    Siwy, Z.S.2    Trautmann, C.3    Wan, J.4    Kamme, F.5
  • 226
    • 77957827528 scopus 로고    scopus 로고
    • Charge-selective transport of organic and protein analytes through synthetic nanochannels
    • 10.1088/0957-4484/21/36/365701
    • Nguyen Q.H. Ali M. Bayer V. Neumann R. Ensinger W. Charge-selective transport of organic and protein analytes through synthetic nanochannels. Nanotechnology 2010, 21(36):365701. 10.1088/0957-4484/21/36/365701
    • (2010) Nanotechnology , vol.21 , Issue.36 , pp. 365701
    • Nguyen, Q.H.1    Ali, M.2    Bayer, V.3    Neumann, R.4    Ensinger, W.5
  • 228
    • 25844461753 scopus 로고    scopus 로고
    • Detecting single porphyrin molecules in a conically shaped synthetic nanopore
    • 10.1021/nl050925i
    • Heins E.A. Siwy Z.S. Baker L.A. Martin C.R. Detecting single porphyrin molecules in a conically shaped synthetic nanopore. Nano Lett. 2005, 5(9):1824-1829. 10.1021/nl050925i
    • (2005) Nano Lett. , vol.5 , Issue.9 , pp. 1824-1829
    • Heins, E.A.1    Siwy, Z.S.2    Baker, L.A.3    Martin, C.R.4
  • 229
    • 42949126743 scopus 로고    scopus 로고
    • A new drug-sensing paradigm based on ion-current rectification in a conically shaped nanopore
    • 10.2217/17435889.3.1.13
    • Wang J. Martin C.R. A new drug-sensing paradigm based on ion-current rectification in a conically shaped nanopore. Nanomedicine 2008, 3(1):13-20. 10.2217/17435889.3.1.13
    • (2008) Nanomedicine , vol.3 , Issue.1 , pp. 13-20
    • Wang, J.1    Martin, C.R.2
  • 230
    • 78149455125 scopus 로고    scopus 로고
    • Integrating ionic gate and rectifier within one solid-state nanopore via modification with dual-responsive copolymer brushes
    • 10.1002/adfm.201000989
    • Guo W. Xia H. Cao L. Xia F. Wang S. Zhang G. Song Y. Wang Y. Jiang L. Zhu D. Integrating ionic gate and rectifier within one solid-state nanopore via modification with dual-responsive copolymer brushes. Adv. Funct. Mater. 2010, 20(20):3561-3567. 10.1002/adfm.201000989
    • (2010) Adv. Funct. Mater. , vol.20 , Issue.20 , pp. 3561-3567
    • Guo, W.1    Xia, H.2    Cao, L.3    Xia, F.4    Wang, S.5    Zhang, G.6    Song, Y.7    Wang, Y.8    Jiang, L.9    Zhu, D.10
  • 231
    • 77955528259 scopus 로고    scopus 로고
    • Nanoporous membranes derived from block copolymers: From drug delivery to water filtration
    • 10.1021/nn1014006
    • Jackson E.A. Hillmyer M.A. Nanoporous membranes derived from block copolymers: From drug delivery to water filtration. ACS Nano 2010, 4(7):3548-3553. 10.1021/nn1014006
    • (2010) ACS Nano , vol.4 , Issue.7 , pp. 3548-3553
    • Jackson, E.A.1    Hillmyer, M.A.2
  • 232
    • 79952587704 scopus 로고    scopus 로고
    • DNA-functionalized nanochannels for SNP detection
    • 10.1021/nl200357y
    • Yang S.Y. Son S. Jang S. Kim H. Jeon G. Kim W.J. Kim J.K. DNA-functionalized nanochannels for SNP detection. Nano Lett. 2011, 11(3):1032-1035. 10.1021/nl200357y
    • (2011) Nano Lett. , vol.11 , Issue.3 , pp. 1032-1035
    • Yang, S.Y.1    Son, S.2    Jang, S.3    Kim, H.4    Jeon, G.5    Kim, W.J.6    Kim, J.K.7
  • 233
    • 36749038472 scopus 로고    scopus 로고
    • Electrochemically replicated smooth aluminum foils for anodic alumina nanochannel arrays
    • 10.1088/0957-4484/19/01/015304
    • Biring S. Tsai K.T. Sur U.K. Wang Y.L. Electrochemically replicated smooth aluminum foils for anodic alumina nanochannel arrays. Nanotechnology 2008, 19(1):015304. 10.1088/0957-4484/19/01/015304
    • (2008) Nanotechnology , vol.19 , Issue.1 , pp. 015304
    • Biring, S.1    Tsai, K.T.2    Sur, U.K.3    Wang, Y.L.4
  • 234
    • 58149252183 scopus 로고    scopus 로고
    • In situ preparation of an ultra-thin nanomask on a silicon wafer
    • 10.1088/0957-4484/20/2/025301
    • Mao R.W. Lin S.K. Tsai C.S. In situ preparation of an ultra-thin nanomask on a silicon wafer. Nanotechnology 2009, 20(2):025301. 10.1088/0957-4484/20/2/025301
    • (2009) Nanotechnology , vol.20 , Issue.2 , pp. 025301
    • Mao, R.W.1    Lin, S.K.2    Tsai, C.S.3
  • 235
    • 51349124827 scopus 로고    scopus 로고
    • Micro-patternable nanoporous polymer integrated with microstructures for molecular filtration
    • 10.1088/0957-4484/19/36/365301
    • Chang C.J. Yang C.S. Chuang Y.J. Khoo H.S. Tseng F.G. Micro-patternable nanoporous polymer integrated with microstructures for molecular filtration. Nanotechnology 2008, 19(36):365301. 10.1088/0957-4484/19/36/365301
    • (2008) Nanotechnology , vol.19 , Issue.36 , pp. 365301
    • Chang, C.J.1    Yang, C.S.2    Chuang, Y.J.3    Khoo, H.S.4    Tseng, F.G.5
  • 236
    • 19444367161 scopus 로고    scopus 로고
    • Opaline photonic crystals: How does self-assembly work?
    • 10.1002/adma.200400455
    • Norris D.J. Arlinghaus E.G. Meng L. Heiny R. Scriven L.E. Opaline photonic crystals: How does self-assembly work?. Adv. Mater. 2004, 16(16):1393-1399. 10.1002/adma.200400455
    • (2004) Adv. Mater. , vol.16 , Issue.16 , pp. 1393-1399
    • Norris, D.J.1    Arlinghaus, E.G.2    Meng, L.3    Heiny, R.4    Scriven, L.E.5
  • 237
    • 1842405373 scopus 로고    scopus 로고
    • Photonic crystals: Putting a new twist on light
    • 10.1038/386143a0
    • Joannopoulos J.D. Villeneuve P.R. Fan S. Photonic crystals: Putting a new twist on light. Nature 1997, 386(6621):143-149. 10.1038/386143a0
    • (1997) Nature , vol.386 , Issue.6621 , pp. 143-149
    • Joannopoulos, J.D.1    Villeneuve, P.R.2    Fan, S.3
  • 238
    • 0031259910 scopus 로고    scopus 로고
    • Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials
    • 10.1038/39834
    • Holtz J.H. Asher S.A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 1997, 389(6653):829-832. 10.1038/39834
    • (1997) Nature , vol.389 , Issue.6653 , pp. 829-832
    • Holtz, J.H.1    Asher, S.A.2
  • 239
    • 0033902546 scopus 로고    scopus 로고
    • Structured porous materials via colloidal crystal templating: From inorganic oxides to metals
    • 10.1002/(SICI)1521-4095(200004)12:7<531::AID-ADMA531>3.0.CO;2-S
    • Velev O.D. Kaler E.W. Structured porous materials via colloidal crystal templating: From inorganic oxides to metals. Adv. Mater. 2000, 12(7):531-534. 10.1002/(SICI)1521-4095(200004)12:7<531::AID-ADMA531>3.0.CO;2-S
    • (2000) Adv. Mater. , vol.12 , Issue.7 , pp. 531-534
    • Velev, O.D.1    Kaler, E.W.2
  • 240
    • 33947392596 scopus 로고    scopus 로고
    • Self assemble colloidal arrays as three dimensional nanofluidic sieves for separation of biomolecules on microchips
    • 10.1021/ac061931h
    • Zeng Y. Harrison D.J. Self assemble colloidal arrays as three dimensional nanofluidic sieves for separation of biomolecules on microchips. Anal. Chem. 2007, 79(6):2289-2295. 10.1021/ac061931h
    • (2007) Anal. Chem. , vol.79 , Issue.6 , pp. 2289-2295
    • Zeng, Y.1    Harrison, D.J.2
  • 241
    • 34547542166 scopus 로고    scopus 로고
    • Monolithic integration of well-ordered nanoporous structures in the microfluidic channels for bioseparation
    • 10.1016/j.chroma.2007.06.037
    • Kuo C.-W. Shiu J.-Y. Wei K.H. Chen P. Monolithic integration of well-ordered nanoporous structures in the microfluidic channels for bioseparation. J. Chromatogr. A 2007, 1162(2):175-179. 10.1016/j.chroma.2007.06.037
    • (2007) J. Chromatogr. A , vol.1162 , Issue.2 , pp. 175-179
    • Kuo, C.-W.1    Shiu, J.-Y.2    Wei, K.H.3    Chen, P.4
  • 242
    • 52049124313 scopus 로고    scopus 로고
    • Microfluidic self-patterning of large-scale crystalline nanoarrays for high-throughput continuous DNA fractionation
    • 10.1002/anie.200800816
    • Zeng Y. He M. Harrison D.J. Microfluidic self-patterning of large-scale crystalline nanoarrays for high-throughput continuous DNA fractionation. Angew. Chem., Int. Ed. 2008, 47(34):6388-6391. 10.1002/anie.200800816
    • (2008) Angew. Chem., Int. Ed. , vol.47 , Issue.34 , pp. 6388-6391
    • Zeng, Y.1    He, M.2    Harrison, D.J.3
  • 243
    • 84859331574 scopus 로고    scopus 로고
    • A nanoporous optofluidic microsystem for highly sensitive and repeatable surface enhanced Raman spectroscopy detection
    • 10.1063/1.3677369
    • Yazdi S.H. White I.M. A nanoporous optofluidic microsystem for highly sensitive and repeatable surface enhanced Raman spectroscopy detection. Biomicrofluidics 2012, 6(1):014105. 10.1063/1.3677369
    • (2012) Biomicrofluidics , vol.6 , Issue.1 , pp. 014105
    • Yazdi, S.H.1    White, I.M.2
  • 244
    • 70249089988 scopus 로고    scopus 로고
    • Nanofluidic electrokinetics in nanoparticle crystal
    • 10.1063/1.3223774
    • Chen Z. Wang Y. Wang W. Li Z. Nanofluidic electrokinetics in nanoparticle crystal. Appl. Phys. Lett. 2009, 95(10):102105. 10.1063/1.3223774
    • (2009) Appl. Phys. Lett. , vol.95 , Issue.10 , pp. 102105
    • Chen, Z.1    Wang, Y.2    Wang, W.3    Li, Z.4
  • 245
    • 41449087806 scopus 로고    scopus 로고
    • Analysis and experiment of capillary valves for microfluidics on a rotating disk
    • 10.1007/s10404-007-0196-x
    • Chen J. Huang P.-C. Lin M.-G. Analysis and experiment of capillary valves for microfluidics on a rotating disk. Microfluid. Nanofluid. 2008, 4(5):427-437. 10.1007/s10404-007-0196-x
    • (2008) Microfluid. Nanofluid. , vol.4 , Issue.5 , pp. 427-437
    • Chen, J.1    Huang, P.-C.2    Lin, M.-G.3
  • 246
    • 84860480105 scopus 로고    scopus 로고
    • In-situ self-assembled colloidal crystals within microchannels using one step stemping for direct seawater desalination by ion concentration polarization
    • (IEEE)
    • Choi E. Kwon K. Lee S.J. Kim D. Park J. In-situ self-assembled colloidal crystals within microchannels using one step stemping for direct seawater desalination by ion concentration polarization. Proceedings of the 25th International Conference on Micro Electro Mechanical Systems 2012, 1313-1315. and in (IEEE)
    • (2012) Proceedings of the 25th International Conference on Micro Electro Mechanical Systems , pp. 1313-1315
    • Choi, E.1    Kwon, K.2    Lee, S.J.3    Kim, D.4    Park, J.5
  • 247
    • 84864692604 scopus 로고    scopus 로고
    • Direct-writing colloidal photonic crystal microfluidic chips by inkjet printing for label-free protein detection
    • 10.1039/c2lc40311k
    • Shen W. Li M. Ye C. Jiang L. Song Y. Direct-writing colloidal photonic crystal microfluidic chips by inkjet printing for label-free protein detection. Lab Chip 2012, 12(17):3089-3095. 10.1039/c2lc40311k
    • (2012) Lab Chip , vol.12 , Issue.17 , pp. 3089-3095
    • Shen, W.1    Li, M.2    Ye, C.3    Jiang, L.4    Song, Y.5
  • 248
    • 77956128380 scopus 로고    scopus 로고
    • Suspended nanoparticle crystal (S-NPC): A nanofluidics-based, electrical read-out biosensor
    • 10.1039/c004758a
    • Lei Y. Xie F. Wang W. Wu W. Li Z. Suspended nanoparticle crystal (S-NPC): A nanofluidics-based, electrical read-out biosensor. Lab Chip 2010, 10(18):2338-2340. 10.1039/c004758a
    • (2010) Lab Chip , vol.10 , Issue.18 , pp. 2338-2340
    • Lei, Y.1    Xie, F.2    Wang, W.3    Wu, W.4    Li, Z.5
  • 249
    • 77954321284 scopus 로고    scopus 로고
    • Nanofluidic diode in a suspended nanoparticle crystal
    • 10.1063/1.3456563
    • Lei Y. Wang W. Wu W. Li Z. Nanofluidic diode in a suspended nanoparticle crystal. Appl. Phys. Lett. 2010, 96(26):263102. 10.1063/1.3456563
    • (2010) Appl. Phys. Lett. , vol.96 , Issue.26 , pp. 263102
    • Lei, Y.1    Wang, W.2    Wu, W.3    Li, Z.4
  • 251
    • 54549090006 scopus 로고    scopus 로고
    • Simple and cost-effective fabrication of two-dimensional plastic nanochannels from silica nanowire templates
    • 10.1007/s10404-008-0314-4
    • Zhang L. Gu F. Tong L. Yin X. Simple and cost-effective fabrication of two-dimensional plastic nanochannels from silica nanowire templates. Microfluid. Nanofluid. 2008, 5(6):727-732. 10.1007/s10404-008-0314-4
    • (2008) Microfluid. Nanofluid. , vol.5 , Issue.6 , pp. 727-732
    • Zhang, L.1    Gu, F.2    Tong, L.3    Yin, X.4
  • 252
    • 0348197032 scopus 로고    scopus 로고
    • Nanofluidic channels with elliptical cross sections formed using a nonlithographic process
    • 10.1063/1.1633008
    • Czaplewski D.A. Kameoka J. Mathers R. Coates G.W. Craighead H.G. Nanofluidic channels with elliptical cross sections formed using a nonlithographic process. Appl. Phys. Lett. 2003, 83(23):4836-4838. 10.1063/1.1633008
    • (2003) Appl. Phys. Lett. , vol.83 , Issue.23 , pp. 4836-4838
    • Czaplewski, D.A.1    Kameoka, J.2    Mathers, R.3    Coates, G.W.4    Craighead, H.G.5
  • 253
    • 77958523857 scopus 로고    scopus 로고
    • Fabrication of monolithic polymer nanofluidic channels using nanowires as sacrificial templates
    • 10.1088/0957-4484/21/42/425302
    • Chu K.S. Kim S. Chung H. Oh J.H. Seong T.Y. An B.H. Kim Y.K. Park J.H. Do Y.R. Kim W. Fabrication of monolithic polymer nanofluidic channels using nanowires as sacrificial templates. Nanotechnology 2010, 21(42):425302. 10.1088/0957-4484/21/42/425302
    • (2010) Nanotechnology , vol.21 , Issue.42 , pp. 425302
    • Chu, K.S.1    Kim, S.2    Chung, H.3    Oh, J.H.4    Seong, T.Y.5    An, B.H.6    Kim, Y.K.7    Park, J.H.8    Do, Y.R.9    Kim, W.10
  • 254
    • 85027949236 scopus 로고    scopus 로고
    • Monolithic fabrication of nanochannels using core-sheath nanofibers as sacrificial mold
    • 10.1007/s10404-011-0801-x
    • Xu S. Zhao Y. Monolithic fabrication of nanochannels using core-sheath nanofibers as sacrificial mold. Microfluid. Nanofluid. 2011, 11(3):359-365. 10.1007/s10404-011-0801-x
    • (2011) Microfluid. Nanofluid. , vol.11 , Issue.3 , pp. 359-365
    • Xu, S.1    Zhao, Y.2
  • 255
    • 77951469119 scopus 로고    scopus 로고
    • Fabrication of nanochannels with water-dissolvable nanowires
    • 10.1088/0957-4484/21/19/195302
    • Gong W. Xue J. Zhuang Q. Wu X. Xu S. Fabrication of nanochannels with water-dissolvable nanowires. Nanotechnology 2010, 21(19):195302. 10.1088/0957-4484/21/19/195302
    • (2010) Nanotechnology , vol.21 , Issue.19 , pp. 195302
    • Gong, W.1    Xue, J.2    Zhuang, Q.3    Wu, X.4    Xu, S.5
  • 256
    • 65249161562 scopus 로고    scopus 로고
    • Fast nonlinear ion transport via field-induced hydrodynamic slip in sub-20-nm hydrophilic nanofluidic transistors
    • 10.1021/nl802931r
    • Vermesh U. Choi J.W. Vermesh O. Fan R. Nagarah J. Heath J.R. Fast nonlinear ion transport via field-induced hydrodynamic slip in sub-20-nm hydrophilic nanofluidic transistors. Nano Lett. 2009, 9(4):1315-1319. 10.1021/nl802931r
    • (2009) Nano Lett. , vol.9 , Issue.4 , pp. 1315-1319
    • Vermesh, U.1    Choi, J.W.2    Vermesh, O.3    Fan, R.4    Nagarah, J.5    Heath, J.R.6
  • 257
    • 42549100930 scopus 로고    scopus 로고
    • The fabrication of polymeric nanochannels by electrospinning
    • 10.1088/0957-4484/19/19/195304
    • Shin M.K. Kim S.K. Lee H. Kim S.I. Kim S.J. The fabrication of polymeric nanochannels by electrospinning. Nanotechnology 2008, 19(19):195304. 10.1088/0957-4484/19/19/195304
    • (2008) Nanotechnology , vol.19 , Issue.19 , pp. 195304
    • Shin, M.K.1    Kim, S.K.2    Lee, H.3    Kim, S.I.4    Kim, S.J.5
  • 258
    • 0347988239 scopus 로고    scopus 로고
    • Aligned multiwalled carbon nanotube membranes
    • 10.1126/science.1092048
    • Hinds B.J. Chopra N. Rantell T. Andrews R. Gavalas V. Bachas L.G. Aligned multiwalled carbon nanotube membranes. Science 2004, 303(5654):62-65. 10.1126/science.1092048
    • (2004) Science , vol.303 , Issue.5654 , pp. 62-65
    • Hinds, B.J.1    Chopra, N.2    Rantell, T.3    Andrews, R.4    Gavalas, V.5    Bachas, L.G.6
  • 259
    • 72849145988 scopus 로고    scopus 로고
    • Rectification of the ionic current through carbon nanotubes by electrostatic assembly of polyelectrolytes
    • 10.1021/nl9020683
    • Scruggs N.R. Robertson J.W. F. Kasianowicz J.J. Migler K.B. Rectification of the ionic current through carbon nanotubes by electrostatic assembly of polyelectrolytes. Nano Lett. 2009, 9(11):3853-3859. 10.1021/nl9020683
    • (2009) Nano Lett. , vol.9 , Issue.11 , pp. 3853-3859
    • Scruggs, N.R.1    Robertson, J.W.F.2    Kasianowicz, J.J.3    Migler, K.B.4
  • 260
    • 25844455162 scopus 로고    scopus 로고
    • DNA translocation in inorganic nanotubes
    • 10.1021/nl0509677
    • Fan R. Karnik R. Yue M. Li D. Majumdar A. Yang P. DNA translocation in inorganic nanotubes. Nano Lett. 2005, 5(9):1633-1637. 10.1021/nl0509677
    • (2005) Nano Lett. , vol.5 , Issue.9 , pp. 1633-1637
    • Fan, R.1    Karnik, R.2    Yue, M.3    Li, D.4    Majumdar, A.5    Yang, P.6
  • 261
    • 69549137368 scopus 로고    scopus 로고
    • Nanofluidic diodes based on nanotube heterojunctions
    • 10.1021/nl9020123
    • Yan R. Liang W. Fan R. Yang P. Nanofluidic diodes based on nanotube heterojunctions. Nano Lett. 2009, 9(11):3820-3825. 10.1021/nl9020123
    • (2009) Nano Lett. , vol.9 , Issue.11 , pp. 3820-3825
    • Yan, R.1    Liang, W.2    Fan, R.3    Yang, P.4
  • 262
    • 74849103516 scopus 로고    scopus 로고
    • Translocation of single-stranded DNA through single-walled carbon nanotubes
    • 10.1126/science.1181799
    • Liu H. He J. Tang J. Pang P. Cao D. Krstic P. Joseph S. Lindsay S. Nuckolls C. Translocation of single-stranded DNA through single-walled carbon nanotubes. Science 2010, 327(5961):64-67. 10.1126/science.1181799
    • (2010) Science , vol.327 , Issue.5961 , pp. 64-67
    • Liu, H.1    He, J.2    Tang, J.3    Pang, P.4    Cao, D.5    Krstic, P.6    Joseph, S.7    Lindsay, S.8    Nuckolls, C.9
  • 263
    • 80053311866 scopus 로고    scopus 로고
    • Origin of giant ionic currents in carbon nanotube channels
    • 10.1021/nn202115s
    • Pang P. He J. Park J.H. Krstic P.S. Lindsay S. Origin of giant ionic currents in carbon nanotube channels. ACS Nano 2011, 5(9):7277-7283. 10.1021/nn202115s
    • (2011) ACS Nano , vol.5 , Issue.9 , pp. 7277-7283
    • Pang, P.1    He, J.2    Park, J.H.3    Krstic, P.S.4    Lindsay, S.5
  • 264
    • 0038631953 scopus 로고    scopus 로고
    • Fabrication of silica nanotube arrays from vertical silicon nanowire templates
    • 10.1021/ja034163+
    • Fan R. Wu Y. Li D. Yue M. Majumdar A. Yang P. Fabrication of silica nanotube arrays from vertical silicon nanowire templates. J. Am. Chem. Soc. 2003, 125(18):5254-5255. 10.1021/ja034163+
    • (2003) J. Am. Chem. Soc. , vol.125 , Issue.18 , pp. 5254-5255
    • Fan, R.1    Wu, Y.2    Li, D.3    Yue, M.4    Majumdar, A.5    Yang, P.6
  • 265
    • 79955673596 scopus 로고    scopus 로고
    • A novel technique for fabrication of micro- and nanofluidic device with embedded single carbon nanotube
    • 10.1016/j.snb.2009.10.003
    • Oh J. Kim G. Mattia D. Noh H. A novel technique for fabrication of micro- and nanofluidic device with embedded single carbon nanotube. Sens. Actuators B 2011, 154(1):67-72. 10.1016/j.snb.2009.10.003
    • (2011) Sens. Actuators B , vol.154 , Issue.1 , pp. 67-72
    • Oh, J.1    Kim, G.2    Mattia, D.3    Noh, H.4
  • 266
    • 79955580208 scopus 로고    scopus 로고
    • Measurement of the rate of water translocation through carbon nanotubes
    • 10.1021/nl200843g
    • Qin X. Yuan Q. Zhao Y. Xie S. Liu Z. Measurement of the rate of water translocation through carbon nanotubes. Nano Lett. 2011, 11(5):2173-2177. 10.1021/nl200843g
    • (2011) Nano Lett. , vol.11 , Issue.5 , pp. 2173-2177
    • Qin, X.1    Yuan, Q.2    Zhao, Y.3    Xie, S.4    Liu, Z.5
  • 268
    • 33646467115 scopus 로고    scopus 로고
    • Inorganic nanotubes: A novel platform for nanofluidics
    • 10.1021/ar040274h
    • Goldberger J. Fan R. Yang P. Inorganic nanotubes: A novel platform for nanofluidics. Acc. Chem. Res. 2006, 39(4):239-248. 10.1021/ar040274h
    • (2006) Acc. Chem. Res. , vol.39 , Issue.4 , pp. 239-248
    • Goldberger, J.1    Fan, R.2    Yang, P.3
  • 269
    • 79958110338 scopus 로고    scopus 로고
    • UV-ablation nanochannels in micro/nanofluidics devices for biochemical analysis
    • 10.1016/j.talanta.2011.03.057
    • Wang C. Ouyang J. Gao H.L. Chen H.W. Xu J.J. Xia X.H. Chen H.Y. UV-ablation nanochannels in micro/nanofluidics devices for biochemical analysis. Talanta 2011, 85(1):298-303. 10.1016/j.talanta.2011.03.057
    • (2011) Talanta , vol.85 , Issue.1 , pp. 298-303
    • Wang, C.1    Ouyang, J.2    Gao, H.L.3    Chen, H.W.4    Xu, J.J.5    Xia, X.H.6    Chen, H.Y.7
  • 270
    • 84863646982 scopus 로고    scopus 로고
    • Rapid protein concentration, efficient fluorescence labeling and purification on a micro/nanofluidics chip
    • 10.1039/c2lc20977b
    • Wang C. Ouyang J. Ye D.K. Xu J.J. Chen H.Y. Xia X.H. Rapid protein concentration, efficient fluorescence labeling and purification on a micro/nanofluidics chip. Lab Chip 2012, 12(15):2664-2671. 10.1039/c2lc20977b
    • (2012) Lab Chip , vol.12 , Issue.15 , pp. 2664-2671
    • Wang, C.1    Ouyang, J.2    Ye, D.K.3    Xu, J.J.4    Chen, H.Y.5    Xia, X.H.6
  • 271
    • 79956098361 scopus 로고    scopus 로고
    • Fabrication of fluidic chips with 1-D nanochannels on PMMA substrates by photoresist-free UV-lithography and UV-assisted low-temperature bonding
    • 10.1007/s10404-010-0753-6
    • Hu X. He Q. Zhang X. Chen H. Fabrication of fluidic chips with 1-D nanochannels on PMMA substrates by photoresist-free UV-lithography and UV-assisted low-temperature bonding. Microfluid. Nanofluid. 2010, 10(6):1223-1232. 10.1007/s10404-010-0753-6
    • (2010) Microfluid. Nanofluid. , vol.10 , Issue.6 , pp. 1223-1232
    • Hu, X.1    He, Q.2    Zhang, X.3    Chen, H.4
  • 272
    • 34249866869 scopus 로고    scopus 로고
    • Tuneable elastomeric nanochannels for nanofluidic manipulation
    • 10.1038/nmat1907
    • Huh D. Mills K.L. Zhu X. Burns M.A. Thouless M.D. Takayama S. Tuneable elastomeric nanochannels for nanofluidic manipulation. Nature Mater. 2007, 6(6):424-428. 10.1038/nmat1907
    • (2007) Nature Mater. , vol.6 , Issue.6 , pp. 424-428
    • Huh, D.1    Mills, K.L.2    Zhu, X.3    Burns, M.A.4    Thouless, M.D.5    Takayama, S.6
  • 273
    • 77953110684 scopus 로고    scopus 로고
    • Instantaneous fabrication of arrays of normally closed, adjustable, and reversible nanochannels by tunnel cracking
    • 10.1039/c000863j
    • Mills K.L. Huh D. Takayama S. Thouless M.D. Instantaneous fabrication of arrays of normally closed, adjustable, and reversible nanochannels by tunnel cracking. Lab Chip 2010, 10(12):1627-1630. 10.1039/c000863j
    • (2010) Lab Chip , vol.10 , Issue.12 , pp. 1627-1630
    • Mills, K.L.1    Huh, D.2    Takayama, S.3    Thouless, M.D.4
  • 274
    • 77957905850 scopus 로고    scopus 로고
    • Large scale lithography-free nano channel array on polystyrene
    • 10.1039/c005245k
    • Xu B.Y. Xu J.J. Xia X.H. Chen H.Y. Large scale lithography-free nano channel array on polystyrene. Lab Chip 2010, 10(21):2894-2901. 10.1039/c005245k
    • (2010) Lab Chip , vol.10 , Issue.21 , pp. 2894-2901
    • Xu, B.Y.1    Xu, J.J.2    Xia, X.H.3    Chen, H.Y.4
  • 275
    • 52649103141 scopus 로고    scopus 로고
    • A simple, disposable microfluidic device for rapid protein concentration and purification via direct-printing
    • 10.1039/b802778a
    • Yu H. Lu Y. Zhou Y.G. Wang F.B. He F.Y. Xia X.H. A simple, disposable microfluidic device for rapid protein concentration and purification via direct-printing. Lab Chip 2008, 8(9):1496-1501. 10.1039/b802778a
    • (2008) Lab Chip , vol.8 , Issue.9 , pp. 1496-1501
    • Yu, H.1    Lu, Y.2    Zhou, Y.G.3    Wang, F.B.4    He, F.Y.5    Xia, X.H.6
  • 276
    • 84877644469 scopus 로고    scopus 로고
    • Microchannel refill: A new method for fabricating 2D nanochannels in polymer substrates
    • 10.1039/c2lc40078b
    • Li J.-M. Liu C. Ke X. Xu Z. Duan Y.-J. Li M. Zhang K.-P. Wang L.-D. Microchannel refill: A new method for fabricating 2D nanochannels in polymer substrates. Lab Chip 2012, 12(20):4059-4062. 10.1039/c2lc40078b
    • (2012) Lab Chip , vol.12 , Issue.20 , pp. 4059-4062
    • Li, J.-M.1    Liu, C.2    Ke, X.3    Xu, Z.4    Duan, Y.-J.5    Li, M.6    Zhang, K.-P.7    Wang, L.-D.8
  • 277
    • 0036709683 scopus 로고    scopus 로고
    • Processing and morphology of permeable polycrystalline silicon thin films
    • 10.1557/JMR.2002.0329
    • Dougherty G.G. Pisano A.A. Sands T. Processing and morphology of permeable polycrystalline silicon thin films. J. Mater. Res. 2011, 17(09):2235-2242. 10.1557/JMR.2002.0329
    • (2011) J. Mater. Res. , vol.17 , Issue.9 , pp. 2235-2242
    • Dougherty, G.G.1    Pisano, A.A.2    Sands, T.3
  • 278
    • 33847132253 scopus 로고    scopus 로고
    • Charge- and size-based separation of macromolecules using ultrathin silicon membranes
    • 10.1038/nature05532
    • Striemer C.C. Gaborski T.R. McGrath J.L. Fauchet P.M. Charge- and size-based separation of macromolecules using ultrathin silicon membranes. Nature 2007, 445(7129):749-753. 10.1038/nature05532
    • (2007) Nature , vol.445 , Issue.7129 , pp. 749-753
    • Striemer, C.C.1    Gaborski, T.R.2    McGrath, J.L.3    Fauchet, P.M.4
  • 279
    • 84865045234 scopus 로고    scopus 로고
    • Use of a columnar metal thin film as a nanosieve with sub-10 nm pores
    • 10.1002/adma.201200755
    • Choi D.H. Han Y.D. Lee B.K. Choi S.J. Yoon H.C. Lee D.S. Yoon J.B. Use of a columnar metal thin film as a nanosieve with sub-10 nm pores. Adv. Mater. 2012, 22(32):4408-4413. 10.1002/adma.201200755
    • (2012) Adv. Mater. , vol.22 , Issue.32 , pp. 4408-4413
    • Choi, D.H.1    Han, Y.D.2    Lee, B.K.3    Choi, S.J.4    Yoon, H.C.5    Lee, D.S.6    Yoon, J.B.7
  • 280
    • 84865271472 scopus 로고    scopus 로고
    • Nanofracture on fused silica microchannel for Donnan exclusion based electrokinetic stacking of biomolecules
    • 10.1039/c2lc40571g
    • Wu Z.Y. Li C.Y. Guo X.L. Li B. Zhang D.W. Xu Y. Fang F. Nanofracture on fused silica microchannel for Donnan exclusion based electrokinetic stacking of biomolecules. Lab on a Chip 2012, 12(18):3408-3412. 10.1039/c2lc40571g
    • (2012) Lab on a Chip , vol.12 , Issue.18 , pp. 3408-3412
    • Wu, Z.Y.1    Li, C.Y.2    Guo, X.L.3    Li, B.4    Zhang, D.W.5    Xu, Y.6    Fang, F.7
  • 281
    • 33746260423 scopus 로고    scopus 로고
    • Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip
    • 10.1021/ac060031y
    • Kim S.M. Burns M.A. Hasselbrink E.F. Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip. Anal. Chem. 2006, 78(14):4779-4785. 10.1021/ac060031y
    • (2006) Anal. Chem. , vol.78 , Issue.14 , pp. 4779-4785
    • Kim, S.M.1    Burns, M.A.2    Hasselbrink, E.F.3
  • 282
    • 76949087447 scopus 로고    scopus 로고
    • Study on the kinetics of homogeneous enzyme reactions in a micro/nanofluidics device
    • 10.1039/b915762j
    • Wang C. Li S.J. Wu Z.Q. Xu J.J. Chen H.Y. Xia X.H. Study on the kinetics of homogeneous enzyme reactions in a micro/nanofluidics device. Lab Chip 2010, 10(5):639-646. 10.1039/b915762j
    • (2010) Lab Chip , vol.10 , Issue.5 , pp. 639-646
    • Wang, C.1    Li, S.J.2    Wu, Z.Q.3    Xu, J.J.4    Chen, H.Y.5    Xia, X.H.6
  • 283
    • 70349444916 scopus 로고    scopus 로고
    • A method for nanofluidic device prototyping using elastomeric collapse
    • 10.1073/pnas.0904004106
    • Park S.M. Huh Y.S. Craighead H.G. Erickson D. A method for nanofluidic device prototyping using elastomeric collapse. Proc. Natl. Acad. Sci. U.S.A. 2009, 106(37):15549-15554. 10.1073/pnas.0904004106
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , Issue.37 , pp. 15549-15554
    • Park, S.M.1    Huh, Y.S.2    Craighead, H.G.3    Erickson, D.4
  • 284
    • 84863216846 scopus 로고    scopus 로고
    • Fabrication of long poly(dimethyl siloxane) nanochannels by replicating protein deposit from confined solution evaporation
    • 10.1063/1.4730371
    • Lo K.-F. Juang Y.-J. Fabrication of long poly(dimethyl siloxane) nanochannels by replicating protein deposit from confined solution evaporation. Biomicrofluidics 2012, 6(2):026504. 10.1063/1.4730371
    • (2012) Biomicrofluidics , vol.6 , Issue.2 , pp. 026504
    • Lo, K.-F.1    Juang, Y.-J.2
  • 285
    • 77955329139 scopus 로고    scopus 로고
    • Detecting DNA folding with nanocapillaries
    • 10.1021/nl100997s
    • Steinbock L.J. Otto O. Chimerel C. Gornall J. Keyser U.F. Detecting DNA folding with nanocapillaries. Nano Lett. 2010, 10(7):2493-2497. 10.1021/nl100997s
    • (2010) Nano Lett. , vol.10 , Issue.7 , pp. 2493-2497
    • Steinbock, L.J.1    Otto, O.2    Chimerel, C.3    Gornall, J.4    Keyser, U.F.5
  • 286
    • 84856444636 scopus 로고    scopus 로고
    • Fabrication of nanometer-size structures in metal thin films using femtosecond laser Bessel beams
    • 10.1063/1.3678030
    • Yalizay B. Ersoy T. Soylu B. Akturk S. Fabrication of nanometer-size structures in metal thin films using femtosecond laser Bessel beams. Appl. Phys. Lett. 2012, 100(3):031104. 10.1063/1.3678030
    • (2012) Appl. Phys. Lett. , vol.100 , Issue.3 , pp. 031104
    • Yalizay, B.1    Ersoy, T.2    Soylu, B.3    Akturk, S.4
  • 287
    • 78650400711 scopus 로고    scopus 로고
    • Injection molded nanofluidic chips: Fabrication method and functional tests using single-molecule DNA experiments
    • 10.1039/c0lc00260g
    • Utko P. Persson F. Kristensen A. Larsen N.B. Injection molded nanofluidic chips: Fabrication method and functional tests using single-molecule DNA experiments. Lab Chip 2011, 11(2):303-308. 10.1039/c0lc00260g
    • (2011) Lab Chip , vol.11 , Issue.2 , pp. 303-308
    • Utko, P.1    Persson, F.2    Kristensen, A.3    Larsen, N.B.4
  • 288
    • 0030465241 scopus 로고    scopus 로고
    • Characterization of individual polynucleotide molecules using a membrane channel
    • 10.1073/pnas.93.24.13770
    • Kasianowicz J.J. Brandin E. Branton D. Deamer D.W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. U.S.A. 1996, 93:13770-13773. 10.1073/pnas.93.24.13770
    • (1996) Proc. Natl. Acad. Sci. U.S.A. , vol.93 , pp. 13770-13773
    • Kasianowicz, J.J.1    Brandin, E.2    Branton, D.3    Deamer, D.W.4
  • 289
    • 0030447720 scopus 로고    scopus 로고
    • Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore
    • 10.1126/science.274.5294.1859
    • Song L. Hobaugh M.R. Shustak C. Cheley S. Bayley H. Gouaux J.E. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 1996, 274(5294):1859-1866. 10.1126/science.274.5294.1859
    • (1996) Science , vol.274 , Issue.5294 , pp. 1859-1866
    • Song, L.1    Hobaugh, M.R.2    Shustak, C.3    Cheley, S.4    Bayley, H.5    Gouaux, J.E.6
  • 290
    • 70349527955 scopus 로고    scopus 로고
    • Discrimination of single base substitutions in a DNA strand immobilized in a biological nanopore
    • 10.1021/nn900441x
    • Purnell R.F. Schmidt J.J. Discrimination of single base substitutions in a DNA strand immobilized in a biological nanopore. ACS Nano 2009, 3(9):2533-2538. 10.1021/nn900441x
    • (2009) ACS Nano , vol.3 , Issue.9 , pp. 2533-2538
    • Purnell, R.F.1    Schmidt, J.J.2
  • 291
    • 80455174619 scopus 로고    scopus 로고
    • Nanopore-based detection of circulating microRNAs in lung cancer patients
    • 10.1038/nnano.2011.147
    • Wang Y. Zheng D. Tan Q. Wang M.X. Gu L.Q. Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat. Nanotechnol. 2011, 6(10):668-674. 10.1038/nnano.2011.147
    • (2011) Nat. Nanotechnol. , vol.6 , Issue.10 , pp. 668-674
    • Wang, Y.1    Zheng, D.2    Tan, Q.3    Wang, M.X.4    Gu, L.Q.5
  • 292
    • 0033776849 scopus 로고    scopus 로고
    • Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore
    • 10.1038/80295
    • Movileanu L. Howorka S. Braha O. Bayley H. Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat. Biotechnol. 2000, 18:1091-1095. 10.1038/80295
    • (2000) Nat. Biotechnol. , vol.18 , pp. 1091-1095
    • Movileanu, L.1    Howorka, S.2    Braha, O.3    Bayley, H.4
  • 293
    • 84856729357 scopus 로고    scopus 로고
    • Protein detection by nanopores equipped with aptamers
    • 10.1021/ja2105653
    • Rotem D. Jayasinghe L. Salichou M. Bayley H. Protein detection by nanopores equipped with aptamers. J. Am. Chem. Soc. 2012, 134(5):2781-2787. 10.1021/ja2105653
    • (2012) J. Am. Chem. Soc. , vol.134 , Issue.5 , pp. 2781-2787
    • Rotem, D.1    Jayasinghe, L.2    Salichou, M.3    Bayley, H.4
  • 294
    • 0035818604 scopus 로고    scopus 로고
    • Kinetics of duplex formation for individual DNA strands within a single protein nanopore
    • 10.1073/pnas.231434698
    • Howorka S. Movileanu L. Braha O. Bayley H. Kinetics of duplex formation for individual DNA strands within a single protein nanopore. Proc. Natl. Acad. Sci. U.S.A. 2001, 98(23):12996-13001. 10.1073/pnas.231434698
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , Issue.23 , pp. 12996-13001
    • Howorka, S.1    Movileanu, L.2    Braha, O.3    Bayley, H.4
  • 297
    • 79960262278 scopus 로고    scopus 로고
    • Formation of hydrophilic nanochannels in the membrane of living cells by the ringlike stable protein-SP1
    • 10.1021/nl201368w
    • Khoutorsky A. Heyman A. Shoseyov O. Spira M.E. Formation of hydrophilic nanochannels in the membrane of living cells by the ringlike stable protein-SP1. Nano Lett. 2011, 11(7):2901-2904. 10.1021/nl201368w
    • (2011) Nano Lett. , vol.11 , Issue.7 , pp. 2901-2904
    • Khoutorsky, A.1    Heyman, A.2    Shoseyov, O.3    Spira, M.E.4
  • 298
    • 4444247468 scopus 로고    scopus 로고
    • Functional engineered channels and pores (Review)
    • 10.1080/09687680410001716853
    • Bayley H. Jayasinghe L. Functional engineered channels and pores (Review). Mol. Membr. Biol. 2004, 21(4):209-220. 10.1080/09687680410001716853
    • (2004) Mol. Membr. Biol. , vol.21 , Issue.4 , pp. 209-220
    • Bayley, H.1    Jayasinghe, L.2
  • 299
    • 64649086349 scopus 로고    scopus 로고
    • Ionic current rectification, breakdown, and switching in heterogeneous oxide nanofluidic devices
    • 10.1021/nn8007542
    • Cheng L.J. Guo L.J. Ionic current rectification, breakdown, and switching in heterogeneous oxide nanofluidic devices. ACS Nano 2009, 3(3):575-584. 10.1021/nn8007542, and (.
    • (2009) ACS Nano , vol.3 , Issue.3 , pp. 575-584
    • Cheng, L.J.1    Guo, L.J.2
  • 300
    • 0000993888 scopus 로고
    • Tailoring surfaces with silanes
    • Arkles B. Tailoring surfaces with silanes. CHEMTECH 1977, 7:766-778.
    • (1977) CHEMTECH , vol.7 , pp. 766-778
    • Arkles, B.1
  • 301
    • 69249206306 scopus 로고    scopus 로고
    • Fabrication and characterization of nanofluidic channels for studying molecular dynamics in confined environments
    • Master's thesis, (Massachusetts Institute of Technology).
    • Mao P. Fabrication and characterization of nanofluidic channels for studying molecular dynamics in confined environments. 2005, Master's thesis, (Massachusetts Institute of Technology).
    • (2005)
    • Mao, P.1
  • 302
    • 0043026989 scopus 로고    scopus 로고
    • Surface modification of multiwalled carbon nanotubes: Toward the tailoring of the interface in polymer composites
    • 10.1021/cm020975d
    • Eitan A. Jiang K. Dukes D. Andrews R. Schadler L.S. Surface modification of multiwalled carbon nanotubes: Toward the tailoring of the interface in polymer composites. Chem. Mater. 2003, 15(16):3198-3201. 10.1021/cm020975d
    • (2003) Chem. Mater. , vol.15 , Issue.16 , pp. 3198-3201
    • Eitan, A.1    Jiang, K.2    Dukes, D.3    Andrews, R.4    Schadler, L.S.5
  • 303
    • 0036311229 scopus 로고    scopus 로고
    • Covalent chemistry of single-wall carbon nanotubes
    • 10.1039/b201013p
    • Bahr J.L. Tour J.M. Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 2002, 12(7):1952-1958. 10.1039/b201013p
    • (2002) J. Mater. Chem. , vol.12 , Issue.7 , pp. 1952-1958
    • Bahr, J.L.1    Tour, J.M.2
  • 306
    • 84859633774 scopus 로고    scopus 로고
    • DNA sequencing with nanopores
    • 10.1038/nbt.2181
    • Schneider G.F. Dekker C. DNA sequencing with nanopores. Nat. Biotechnol. 2012, 30(4):326-328. 10.1038/nbt.2181
    • (2012) Nat. Biotechnol. , vol.30 , Issue.4 , pp. 326-328
    • Schneider, G.F.1    Dekker, C.2
  • 307
    • 77249128977 scopus 로고    scopus 로고
    • Single molecule sensing by nanopores and nanopore devices
    • 10.1039/b907735a
    • Gu L.Q. Shim J.W. Single molecule sensing by nanopores and nanopore devices. Analyst 2010, 135:441-451. 10.1039/b907735a
    • (2010) Analyst , vol.135 , pp. 441-451
    • Gu, L.Q.1    Shim, J.W.2
  • 308
    • 27744551948 scopus 로고    scopus 로고
    • Status of ion track technology-Prospects of single tracks
    • 10.1016/j.radmeas.2005.03.008
    • Spohr R. Status of ion track technology-Prospects of single tracks. Radiat. Meas. 2005, 40:191-202. 10.1016/j.radmeas.2005.03.008
    • (2005) Radiat. Meas. , vol.40 , pp. 191-202
    • Spohr, R.1
  • 309
    • 41149155320 scopus 로고    scopus 로고
    • Gated proton transport in aligned mesoporous silica films
    • 10.1038/nmat2127
    • Fan R. Huh S. Yan R. Arnold J. Yang P. Gated proton transport in aligned mesoporous silica films. Nature Mater. 2008, 7(4):303-307. 10.1038/nmat2127
    • (2008) Nature Mater. , vol.7 , Issue.4 , pp. 303-307
    • Fan, R.1    Huh, S.2    Yan, R.3    Arnold, J.4    Yang, P.5
  • 310
    • 24744433042 scopus 로고    scopus 로고
    • Million-fold preconcentration of proteins and peptides by nanofluidic filter
    • 10.1021/ac050321z
    • Wang Y.C. Stevens A.L. Han J. Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal. Chem. 2005, 77(14):4293-4299. 10.1021/ac050321z
    • (2005) Anal. Chem. , vol.77 , Issue.14 , pp. 4293-4299
    • Wang, Y.C.1    Stevens, A.L.2    Han, J.3
  • 311
    • 29744448539 scopus 로고    scopus 로고
    • Nanofilter array chip for fast gel-free biomolecule separation
    • 10.1063/1.2149979
    • Fu J. Mao P. Han J. Nanofilter array chip for fast gel-free biomolecule separation. Appl. Phys. Lett. 2005, 87:263902. 10.1063/1.2149979
    • (2005) Appl. Phys. Lett. , vol.87 , pp. 263902
    • Fu, J.1    Mao, P.2    Han, J.3
  • 312
    • 34547465510 scopus 로고    scopus 로고
    • Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel
    • 10.1103/PhysRevLett.99.044501
    • Stein D. Kruithof M. Dekker C. Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Phys. Rev. Lett. 2007, 99(4):044501. 10.1103/PhysRevLett.99.044501
    • (2007) Phys. Rev. Lett. , vol.99 , Issue.4 , pp. 044501
    • Stein, D.1    Kruithof, M.2    Dekker, C.3
  • 313
    • 29044446773 scopus 로고    scopus 로고
    • Maximum achievable aspect ratio in deep reactive ion etching of silicon due to aspect ratio dependent transport and the microloading effect
    • 10.1116/1.2101678
    • Yeom J. Wu Y. Selby J.C. Shannon M.A. Maximum achievable aspect ratio in deep reactive ion etching of silicon due to aspect ratio dependent transport and the microloading effect. J. Vac. Sci. Technol. B 2005, 23(6):2319-2329. 10.1116/1.2101678
    • (2005) J. Vac. Sci. Technol. B , vol.23 , Issue.6 , pp. 2319-2329
    • Yeom, J.1    Wu, Y.2    Selby, J.C.3    Shannon, M.A.4
  • 314
    • 47249094027 scopus 로고    scopus 로고
    • Non-planar nanofluidic devices for single molecule analysis fabricated using nanoglassblowing
    • 10.1088/0957-4484/19/31/315301
    • Strychalski E.A. Stavis S.M. Craighead H.G. Non-planar nanofluidic devices for single molecule analysis fabricated using nanoglassblowing. Nanotechnology 2008, 1931:315301. 10.1088/0957-4484/19/31/315301
    • (2008) Nanotechnology , vol.1931 , pp. 315301
    • Strychalski, E.A.1    Stavis, S.M.2    Craighead, H.G.3
  • 315
    • 84862016284 scopus 로고    scopus 로고
    • Nanopores as protein sensors
    • 10.1038/nbt.2264
    • Howorka S. Siwy Z.S. Nanopores as protein sensors. Nat. Biotechnol. 2012, 30(6):506-507. 10.1038/nbt.2264
    • (2012) Nat. Biotechnol. , vol.30 , Issue.6 , pp. 506-507
    • Howorka, S.1    Siwy, Z.S.2
  • 316
    • 33845243958 scopus 로고    scopus 로고
    • Helium ion microscope: A new tool for nanoscale microscopy and metrology
    • 10.1116/1.2357967
    • Ward B.W. Notte J.A. Economou N.P. Helium ion microscope: A new tool for nanoscale microscopy and metrology. J. Vac. Sci. Technol. B 2006, 24:2871-2874. 10.1116/1.2357967
    • (2006) J. Vac. Sci. Technol. B , vol.24 , pp. 2871-2874
    • Ward, B.W.1    Notte, J.A.2    Economou, N.P.3
  • 318
    • 79955535290 scopus 로고    scopus 로고
    • Preparation of rhombus-shaped micro/nanofluidic channels with dimensions ranging from hundred nanometers to several micrometers
    • 10.1166/jnn.2010.2842
    • Xie F. Wang Y. Wang W. Li Z. Yossifon G. Chang H.-C. Preparation of rhombus-shaped micro/nanofluidic channels with dimensions ranging from hundred nanometers to several micrometers. J. Nanosci. Nanotechnol. 2010, 10(11):7277-7281. 10.1166/jnn.2010.2842
    • (2010) J. Nanosci. Nanotechnol. , vol.10 , Issue.11 , pp. 7277-7281
    • Xie, F.1    Wang, Y.2    Wang, W.3    Li, Z.4    Yossifon, G.5    Chang, H.-C.6
  • 319
    • 70349897897 scopus 로고    scopus 로고
    • One-dimensional alignment of SBA-15 films in microtrenches
    • 10.1021/la902202s
    • Daiguji H. Tatsumi N. Kataoka S. Endo A. One-dimensional alignment of SBA-15 films in microtrenches. Langmuir 2009, 25(19):11221-11224. 10.1021/la902202s
    • (2009) Langmuir , vol.25 , Issue.19 , pp. 11221-11224
    • Daiguji, H.1    Tatsumi, N.2    Kataoka, S.3    Endo, A.4
  • 321
    • 84859806565 scopus 로고    scopus 로고
    • Ion transport in mesoporous silica SBA-16 thin films with 3D cubic structures
    • 10.1021/la204477h
    • Daiguji H. Hwang J. Takahashi A. Kataoka S. Endo A. Ion transport in mesoporous silica SBA-16 thin films with 3D cubic structures. Langmuir 2012, 28(7):3671-3677. 10.1021/la204477h
    • (2012) Langmuir , vol.28 , Issue.7 , pp. 3671-3677
    • Daiguji, H.1    Hwang, J.2    Takahashi, A.3    Kataoka, S.4    Endo, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.