-
1
-
-
22344445940
-
Nanofluidics: What is it and what can we expect from it
-
10.1007/s10404-004-0012-9
-
Eijkel J.C. T. v. d. Berg A. Nanofluidics: What is it and what can we expect from it. Microfluid. Nanofluid. 2005, 1(3):249-267. 10.1007/s10404-004-0012-9, and "?".
-
(2005)
Microfluid. Nanofluid.
, vol.1
, Issue.3
, pp. 249-267
-
-
Eijkel, J.C.T.1
V D Berg, A.2
-
2
-
-
70350725986
-
Principles and applications of nanofluidic transport
-
10.1038/nnano.2009.332
-
Sparreboom W. van den Berg A. Eijkel J.C. Principles and applications of nanofluidic transport. Nat. Nanotechnol. 2009, 4(11):713-720. 10.1038/nnano.2009.332
-
(2009)
Nat. Nanotechnol.
, vol.4
, Issue.11
, pp. 713-720
-
-
Sparreboom, W.1
van den Berg, A.2
Eijkel, J.C.3
-
3
-
-
0344688277
-
Capillarity induced negative pressure of water plugs in nanochannels
-
10.1021/nl034676e
-
Tas N.R. Mela P. Kramer T. Berenschot J.W. van den Berg A. Capillarity induced negative pressure of water plugs in nanochannels. Nano Lett. 2003, 3(11):1537-1540. 10.1021/nl034676e
-
(2003)
Nano Lett.
, vol.3
, Issue.11
, pp. 1537-1540
-
-
Tas, N.R.1
Mela, P.2
Kramer, T.3
Berenschot, J.W.4
van den Berg, A.5
-
4
-
-
84857982307
-
Evaporation-induced cavitation in nanofluidic channels
-
10.1073/pnas.1014075109
-
Duan C. Karnik R. Lu M.C. Majumdar A. Evaporation-induced cavitation in nanofluidic channels. Proc. Natl. Acad. Sci. U.S.A. 2012, 109(10):3683-3693. 10.1073/pnas.1014075109
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, Issue.10
, pp. 3683-3693
-
-
Duan, C.1
Karnik, R.2
Lu, M.C.3
Majumdar, A.4
-
5
-
-
33748303033
-
Diffusion-limited patterning of molecules in nanofluidic channels
-
10.1021/nl061159y
-
Karnik R. Castelino K. Duan C.H. Majumdar A. Diffusion-limited patterning of molecules in nanofluidic channels. Nano Lett. 2006, 6(8):1735-1740. 10.1021/nl061159y
-
(2006)
Nano Lett.
, vol.6
, Issue.8
, pp. 1735-1740
-
-
Karnik, R.1
Castelino, K.2
Duan, C.H.3
Majumdar, A.4
-
6
-
-
64149127235
-
Understanding electrokinetics at the nanoscale: A perspective
-
10.1063/1.3056045
-
Chang H.C. Yossifon G. Understanding electrokinetics at the nanoscale: A perspective. Biomicrofluidics 2009, 3(1):012001. 10.1063/1.3056045
-
(2009)
Biomicrofluidics
, vol.3
, Issue.1
, pp. 012001
-
-
Chang, H.C.1
Yossifon, G.2
-
7
-
-
4344568092
-
Surface-charge-governed ion transport in nanofluidic channels
-
10.1103/PhysRevLett.93.035901
-
Stein D. Kruithof M. Dekker C. Surface-charge-governed ion transport in nanofluidic channels. Phys. Rev. Lett. 2004, 93(3):035901. 10.1103/PhysRevLett.93.035901
-
(2004)
Phys. Rev. Lett.
, vol.93
, Issue.3
, pp. 035901
-
-
Stein, D.1
Kruithof, M.2
Dekker, C.3
-
8
-
-
21644471265
-
Stretching DNA in nanochannels
-
Tegenfeldt J.O. Cao H. Reisner W.W. Prinz C. Austin R.H. Chou S.Y. Cox E.C. Sturm J.C. Stretching DNA in nanochannels. Biophys. J. 2004, 86(1):596A. and
-
(2004)
Biophys. J.
, vol.86
, Issue.1
-
-
Tegenfeldt, J.O.1
Cao, H.2
Reisner, W.W.3
Prinz, C.4
Austin, R.H.5
Chou, S.Y.6
Cox, E.C.7
Sturm, J.C.8
-
9
-
-
41849096397
-
Nanofluidic devices and their applications
-
10.1021/ac702296u
-
Abgrall P. Nguyen N.T. Nanofluidic devices and their applications. Anal. Chem. 2008, 80(7):2326-2341. 10.1021/ac702296u
-
(2008)
Anal. Chem.
, vol.80
, Issue.7
, pp. 2326-2341
-
-
Abgrall, P.1
Nguyen, N.T.2
-
10
-
-
49449090221
-
Transport phenomena in nanofluidics
-
10.1103/RevModPhys.80.839
-
Schoch R. Han J. Renaud P. Transport phenomena in nanofluidics. Rev. Mod. Phys. 2008, 80(3):839-883. 10.1103/RevModPhys.80.839
-
(2008)
Rev. Mod. Phys.
, vol.80
, Issue.3
, pp. 839-883
-
-
Schoch, R.1
Han, J.2
Renaud, P.3
-
11
-
-
84866413854
-
Fabrication of nanofluidic biochips with nanochannels for applications in DNA analysis
-
10.1002/smll.201200240
-
Xia D. Yan J. Hou S. Fabrication of nanofluidic biochips with nanochannels for applications in DNA analysis. Small 2012, 8(18):2787-2801. 10.1002/smll.201200240
-
(2012)
Small
, vol.8
, Issue.18
, pp. 2787-2801
-
-
Xia, D.1
Yan, J.2
Hou, S.3
-
12
-
-
10844293666
-
Electrochemomechanical energy conversion in nanofluidic channels
-
10.1021/nl0489945
-
Daiguji H. Yang P. Szeri A.J. Majumdar A. Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett. 2004, 4(12):2315-2321. 10.1021/nl0489945
-
(2004)
Nano Lett.
, vol.4
, Issue.12
, pp. 2315-2321
-
-
Daiguji, H.1
Yang, P.2
Szeri, A.J.3
Majumdar, A.4
-
13
-
-
78649753947
-
Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels
-
10.1007/s10404-010-0641-0
-
Kim D.-K. Duan C. Chen Y.-F. Majumdar A. Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels. Microfluid. Nanofluid. 2010, 9(6):1215-1224. 10.1007/s10404-010-0641-0
-
(2010)
Microfluid. Nanofluid.
, vol.9
, Issue.6
, pp. 1215-1224
-
-
Kim, D.-K.1
Duan, C.2
Chen, Y.-F.3
Majumdar, A.4
-
14
-
-
77949262942
-
An inorganic-organic proton exchange membrane for fuel cells with a controlled nanoscale pore structure
-
10.1038/nnano.2010.13
-
Moghaddam S. Pengwang E. Jiang Y.B. Garcia A.R. Burnett D.J. Brinker C.J. Masel R.I. Shannon M.A. An inorganic-organic proton exchange membrane for fuel cells with a controlled nanoscale pore structure. Nat. Nanotechnol. 2010, 5(3):230-236. 10.1038/nnano.2010.13
-
(2010)
Nat. Nanotechnol.
, vol.5
, Issue.3
, pp. 230-236
-
-
Moghaddam, S.1
Pengwang, E.2
Jiang, Y.B.3
Garcia, A.R.4
Burnett, D.J.5
Brinker, C.J.6
Masel, R.I.7
Shannon, M.A.8
-
15
-
-
77950809846
-
Direct seawater desalination by ion concentration polarization
-
10.1038/nnano.2010.34
-
Kim S.J. Ko S.H. Kang K.H. Han J. Direct seawater desalination by ion concentration polarization. Nat. Nanotechnol. 2010, 5(4):297-301. 10.1038/nnano.2010.34
-
(2010)
Nat. Nanotechnol.
, vol.5
, Issue.4
, pp. 297-301
-
-
Kim, S.J.1
Ko, S.H.2
Kang, K.H.3
Han, J.4
-
16
-
-
33646753161
-
Fast mass transport through sub-2-nanometer carbon nanotubes
-
10.1126/science.1126298
-
Holt J.K. Park H.G. Wang Y.M. Stadermann M. Artyukhin A.B. Grigoropoulos C.P. Noy A. Bakajin O. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 2006, 312(5776):1034-1037. 10.1126/science.1126298
-
(2006)
Science
, vol.312
, Issue.5776
, pp. 1034-1037
-
-
Holt, J.K.1
Park, H.G.2
Wang, Y.M.3
Stadermann, M.4
Artyukhin, A.B.5
Grigoropoulos, C.P.6
Noy, A.7
Bakajin, O.8
-
17
-
-
37849002503
-
Nanoprecipitation-assisted ion current oscillations
-
10.1038/nnano.2007.420
-
Powell M.R. Sullivan M. Vlassiouk I. Constantin D. Sudre O. Martens C.C. Eisenberg R.S. Siwy Z.S. Nanoprecipitation-assisted ion current oscillations. Nat. Nanotechnol. 2008, 3(1):51-57. 10.1038/nnano.2007.420
-
(2008)
Nat. Nanotechnol.
, vol.3
, Issue.1
, pp. 51-57
-
-
Powell, M.R.1
Sullivan, M.2
Vlassiouk, I.3
Constantin, D.4
Sudre, O.5
Martens, C.C.6
Eisenberg, R.S.7
Siwy, Z.S.8
-
19
-
-
18044384992
-
New approaches to nanofabrication: Molding, printing, and other techniques
-
10.1021/cr030076o
-
Gates B.D. Xu Q. Stewart M. Ryan D. Willson C.G. Whitesides G.M. New approaches to nanofabrication: Molding, printing, and other techniques. Chem. Rev. 2005, 105(4):1171-1196. 10.1021/cr030076o
-
(2005)
Chem. Rev.
, vol.105
, Issue.4
, pp. 1171-1196
-
-
Gates, B.D.1
Xu, Q.2
Stewart, M.3
Ryan, D.4
Willson, C.G.5
Whitesides, G.M.6
-
20
-
-
33645809573
-
Review of fabrication of nanochannels for single phase liquid flow
-
10.1007/s10404-005-0068-1
-
Perry J.L. Kandlikar S.G. Review of fabrication of nanochannels for single phase liquid flow. Microfluid. Nanofluid. 2005, 2(3):185-193. 10.1007/s10404-005-0068-1
-
(2005)
Microfluid. Nanofluid.
, vol.2
, Issue.3
, pp. 185-193
-
-
Perry, J.L.1
Kandlikar, S.G.2
-
21
-
-
18744363890
-
Technologies for nanofluidic systems: Top-down vs. bottom-up-a review
-
10.1039/b416951d
-
Mijatovic D. Eijkel J.C. van den Berg A. Technologies for nanofluidic systems: Top-down vs. bottom-up-a review. Lab Chip 2005, 5(5):492-500. 10.1039/b416951d
-
(2005)
Lab Chip
, vol.5
, Issue.5
, pp. 492-500
-
-
Mijatovic, D.1
Eijkel, J.C.2
van den Berg, A.3
-
22
-
-
34248351114
-
Solid-state nanopores
-
10.1038/nnano.2007.27
-
Dekker C. Solid-state nanopores. Nat. Nanotechnol. 2007, 2(4):209-215. 10.1038/nnano.2007.27
-
(2007)
Nat. Nanotechnol.
, vol.2
, Issue.4
, pp. 209-215
-
-
Dekker, C.1
-
23
-
-
44649143192
-
Nanofluidic: Systems and applications
-
10.1109/JSEN.2008.918758
-
Prakash S. Piruska A. Gatimu E.N. Bohn P.W. Sweedler J.V. Shannon M.A. Nanofluidic: Systems and applications. IEEE Sens. J. 2008, 8(5):441-450. 10.1109/JSEN.2008.918758
-
(2008)
IEEE Sens. J.
, vol.8
, Issue.5
, pp. 441-450
-
-
Prakash, S.1
Piruska, A.2
Gatimu, E.N.3
Bohn, P.W.4
Sweedler, J.V.5
Shannon, M.A.6
-
24
-
-
0035144402
-
Nanofabrication: Concentional and nonconventional methods
-
10.1002/1522-2683(200101)22:2<187::AID-ELPS187>3.0.CO;2-0
-
Chen Y. Pepin A. Nanofabrication: Concentional and nonconventional methods. Electrophoresis 2001, 22:187-207. 10.1002/1522-2683(200101)22:2<187::AID-ELPS187>3.0.CO;2-0
-
(2001)
Electrophoresis
, vol.22
, pp. 187-207
-
-
Chen, Y.1
Pepin, A.2
-
25
-
-
77955526390
-
Ion transport in nanofluidic funnels
-
10.1021/nn100692z
-
Perry J.M. Zhou K. Harms Z.D. Jacobson S.C. Ion transport in nanofluidic funnels. ACS Nano 2010, 4(7):3897-3902. 10.1021/nn100692z
-
(2010)
ACS Nano
, vol.4
, Issue.7
, pp. 3897-3902
-
-
Perry, J.M.1
Zhou, K.2
Harms, Z.D.3
Jacobson, S.C.4
-
26
-
-
78650370305
-
Simple fabrication of hydrophilic nanochannels using the chemical bonding between activated ultrathin PDMS layer and cover glass by oxygen plasma
-
10.1039/c0lc00015a
-
Kim S.H. Cui Y. Lee M.J. Nam S.W. Oh D. Kang S.H. Kim Y.S. Park S. Simple fabrication of hydrophilic nanochannels using the chemical bonding between activated ultrathin PDMS layer and cover glass by oxygen plasma. Lab Chip 2011, 11(2):348-353. 10.1039/c0lc00015a
-
(2011)
Lab Chip
, vol.11
, Issue.2
, pp. 348-353
-
-
Kim, S.H.1
Cui, Y.2
Lee, M.J.3
Nam, S.W.4
Oh, D.5
Kang, S.H.6
Kim, Y.S.7
Park, S.8
-
27
-
-
29144511554
-
Unidirectional transport of a bead on a single microtubule immobilized in a submicrometre channel
-
10.1088/0957-4484/17/1/049
-
Yokokawa R. Yoshida Y. Takeuchi S. Kon T. Fujita H. Unidirectional transport of a bead on a single microtubule immobilized in a submicrometre channel. Nanotechnology 2006, 17(1):289-294. 10.1088/0957-4484/17/1/049
-
(2006)
Nanotechnology
, vol.17
, Issue.1
, pp. 289-294
-
-
Yokokawa, R.1
Yoshida, Y.2
Takeuchi, S.3
Kon, T.4
Fujita, H.5
-
28
-
-
0037115606
-
Nanochannels on a fused-silica microchip and liquid properties investigation by time-resolved fluorescence measurements
-
10.1021/ac025808b
-
Hibara A. Saito T. Kim H.B. Tokeshi M. Ooi T. Nakao M. Kitamori T. Nanochannels on a fused-silica microchip and liquid properties investigation by time-resolved fluorescence measurements. Anal. Chem. 2002, 74(24):6170-6176. 10.1021/ac025808b
-
(2002)
Anal. Chem.
, vol.74
, Issue.24
, pp. 6170-6176
-
-
Hibara, A.1
Saito, T.2
Kim, H.B.3
Tokeshi, M.4
Ooi, T.5
Nakao, M.6
Kitamori, T.7
-
29
-
-
68149166295
-
NMR studies of structure and dynamics of liquid molecules confined in extended nanospaces
-
10.1021/jp903275t
-
Tsukahara T. Mizutani W. Mawatari K. Kitamori T. NMR studies of structure and dynamics of liquid molecules confined in extended nanospaces. J. Phys. Chem. B 2009, 113(31):10808-10816. 10.1021/jp903275t
-
(2009)
J. Phys. Chem. B
, vol.113
, Issue.31
, pp. 10808-10816
-
-
Tsukahara, T.1
Mizutani, W.2
Mawatari, K.3
Kitamori, T.4
-
30
-
-
33751529738
-
Pressure-driven flow control system for nanofluidic chemical process
-
10.1016/j.chroma.2006.10.097
-
Tamaki E. Hibara A. Kim H.B. Tokeshi M. Kitamori T. Pressure-driven flow control system for nanofluidic chemical process. J. Chromatogr. A 2006, 1137(2):256-262. 10.1016/j.chroma.2006.10.097
-
(2006)
J. Chromatogr. A
, vol.1137
, Issue.2
, pp. 256-262
-
-
Tamaki, E.1
Hibara, A.2
Kim, H.B.3
Tokeshi, M.4
Kitamori, T.5
-
31
-
-
83655164503
-
Nanofluidic devices with two pores in series for resistive-pulse sensing of single virus capsids
-
10.1021/ac202358t
-
Harms Z.D. Mogensen K.B. Nunes P.S. Zhou K. Hildenbrand B.W. Mitra I. Tan Z. Zlotnick A. Kutter J.P. Jacobson S.C. Nanofluidic devices with two pores in series for resistive-pulse sensing of single virus capsids. Anal. Chem. 2011, 83(24):9573-9578. 10.1021/ac202358t
-
(2011)
Anal. Chem.
, vol.83
, Issue.24
, pp. 9573-9578
-
-
Harms, Z.D.1
Mogensen, K.B.2
Nunes, P.S.3
Zhou, K.4
Hildenbrand, B.W.5
Mitra, I.6
Tan, Z.7
Zlotnick, A.8
Kutter, J.P.9
Jacobson, S.C.10
-
32
-
-
58149277694
-
Entropic unfolding of DNA molecules in nanofluidic channels
-
10.1021/nl802256s
-
Levy S.L. Mannion J.T. Cheng J. Reccius C.H. Craighead H.G. Entropic unfolding of DNA molecules in nanofluidic channels. Nano Lett. 2008, 8(11):3839-3844. 10.1021/nl802256s
-
(2008)
Nano Lett.
, vol.8
, Issue.11
, pp. 3839-3844
-
-
Levy, S.L.1
Mannion, J.T.2
Cheng, J.3
Reccius, C.H.4
Craighead, H.G.5
-
33
-
-
33749650219
-
A nanofluidic railroad switch for DNA
-
10.1021/nl061137b
-
Riehn R. Austin R.H. Sturm J.C. A nanofluidic railroad switch for DNA. Nano Lett. 2006, 6(9):1973-1976. 10.1021/nl061137b
-
(2006)
Nano Lett.
, vol.6
, Issue.9
, pp. 1973-1976
-
-
Riehn, R.1
Austin, R.H.2
Sturm, J.C.3
-
34
-
-
34547690725
-
Nanoconfinement-enhanced conformational response of single DNA molecules to changes in ionic environment
-
10.1103/PhysRevLett.99.058302
-
Reisner W. Beech J. Larsen N. Flyvbjerg H. Kristensen A. Tegenfeldt J. Nanoconfinement-enhanced conformational response of single DNA molecules to changes in ionic environment. Phys. Rev. Lett. 2007, 99(5):058302. 10.1103/PhysRevLett.99.058302
-
(2007)
Phys. Rev. Lett.
, vol.99
, Issue.5
, pp. 058302
-
-
Reisner, W.1
Beech, J.2
Larsen, N.3
Flyvbjerg, H.4
Kristensen, A.5
Tegenfeldt, J.6
-
35
-
-
79957797025
-
Sub-10-nm nanochannels by self-sealing and self-limiting atomic layer deposition
-
10.1021/nl100999e
-
Nam S.W. Lee M.H. Lee S.H. Lee D.J. Rossnagel S.M. Kim K.B. Sub-10-nm nanochannels by self-sealing and self-limiting atomic layer deposition. Nano Lett. 2010, 10(9):3324-3329. 10.1021/nl100999e
-
(2010)
Nano Lett.
, vol.10
, Issue.9
, pp. 3324-3329
-
-
Nam, S.W.1
Lee, M.H.2
Lee, S.H.3
Lee, D.J.4
Rossnagel, S.M.5
Kim, K.B.6
-
36
-
-
78650123788
-
Nanofluidic channels fabricated by e-beam lithography and polymer reflow sealing
-
10.1116/1.3517620
-
Fouad M. Yavuz M. Cui B. Nanofluidic channels fabricated by e-beam lithography and polymer reflow sealing. J. Vac. Sci. Technol. B 2010, 28(6):C6I11-C6I13. 10.1116/1.3517620
-
(2010)
J. Vac. Sci. Technol. B
, vol.28
, Issue.6
-
-
Fouad, M.1
Yavuz, M.2
Cui, B.3
-
37
-
-
77951000462
-
Complementary metal oxide semiconductor compatible fabrication and characterization of parylene-C covered nanofluidic channels with integrated nanoelectrodes
-
10.1063/1.3212074
-
Tung C.K. Riehn R. Austin R.H. Complementary metal oxide semiconductor compatible fabrication and characterization of parylene-C covered nanofluidic channels with integrated nanoelectrodes. Biomicrofluidics 2009, 3(3):031101. 10.1063/1.3212074
-
(2009)
Biomicrofluidics
, vol.3
, Issue.3
, pp. 031101
-
-
Tung, C.K.1
Riehn, R.2
Austin, R.H.3
-
38
-
-
33644922253
-
Recent developments in nanofabrication using focused ion beams
-
10.1002/smll.200500113
-
Tseng A.A. Recent developments in nanofabrication using focused ion beams. Small 2005, 1(10):924-939. 10.1002/smll.200500113
-
(2005)
Small
, vol.1
, Issue.10
, pp. 924-939
-
-
Tseng, A.A.1
-
39
-
-
2342636455
-
Recent developments in micromilling using focused ion beam technology
-
10.1088/0960-1317/14/4/R01
-
Tseng A.A. Recent developments in micromilling using focused ion beam technology. J. Micromech. Microeng. 2004, 14(4):R15-R34. 10.1088/0960-1317/14/4/R01
-
(2004)
J. Micromech. Microeng.
, vol.14
, Issue.4
-
-
Tseng, A.A.1
-
40
-
-
9644273841
-
Probing single DNA molecule transport using fabricated nanopores
-
10.1021/nl048654j
-
Chen P. Gu J.J. Brandin E. Kim Y.R. Wang Q. Branton D. Probing single DNA molecule transport using fabricated nanopores. Nano Lett. 2004, 4(11):2293-2298. 10.1021/nl048654j
-
(2004)
Nano Lett.
, vol.4
, Issue.11
, pp. 2293-2298
-
-
Chen, P.1
Gu, J.J.2
Brandin, E.3
Kim, Y.R.4
Wang, Q.5
Branton, D.6
-
41
-
-
33845985288
-
Fabrication and functionalization of nanochannels by electron-beam-induced silicon oxide deposition
-
10.1021/la061321c
-
Danelon C. Santschi C. Brugger J. Vogel H. Fabrication and functionalization of nanochannels by electron-beam-induced silicon oxide deposition. Langmuir 2006, 22(25):10711-10715. 10.1021/la061321c
-
(2006)
Langmuir
, vol.22
, Issue.25
, pp. 10711-10715
-
-
Danelon, C.1
Santschi, C.2
Brugger, J.3
Vogel, H.4
-
42
-
-
77949544591
-
DNA-functionalized solid state nanopore for biosensing
-
10.1088/0957-4484/21/14/145102
-
Mussi V. Fanzio P. Repetto L. Firpo G. Scaruffi P. Stigliani S. Tonini G.P. Valbusa U. DNA-functionalized solid state nanopore for biosensing. Nanotechnology 2010, 21(14):145102. 10.1088/0957-4484/21/14/145102
-
(2010)
Nanotechnology
, vol.21
, Issue.14
, pp. 145102
-
-
Mussi, V.1
Fanzio, P.2
Repetto, L.3
Firpo, G.4
Scaruffi, P.5
Stigliani, S.6
Tonini, G.P.7
Valbusa, U.8
-
43
-
-
1442324498
-
Silicon nitride nanosieve membrane
-
10.1021/nl0350175
-
Tong H.D. Jansen H.V. Gadgil V.J. Bostan C.G. Berenschot E. van Rijn C.J. M. Elwenspoek M. Silicon nitride nanosieve membrane. Nano Lett. 2004, 4(2):283-287. 10.1021/nl0350175
-
(2004)
Nano Lett.
, vol.4
, Issue.2
, pp. 283-287
-
-
Tong, H.D.1
Jansen, H.V.2
Gadgil, V.J.3
Bostan, C.G.4
Berenschot, E.5
van Rijn, C.J.M.6
Elwenspoek, M.7
-
44
-
-
77958578769
-
Unique nanopore pattern formation by focused ion beam guided anodization
-
10.1088/0957-4484/21/40/405301
-
Tian Z.P. Lu K. Chen B. Unique nanopore pattern formation by focused ion beam guided anodization. Nanotechnology 2010, 21(40):405301. 10.1088/0957-4484/21/40/405301
-
(2010)
Nanotechnology
, vol.21
, Issue.40
, pp. 405301
-
-
Tian, Z.P.1
Lu, K.2
Chen, B.3
-
45
-
-
4444245707
-
Fabrication of single nanofluidic channels in poly(methylmethacrylate) films via focused-ion beam milling for use as molecular gates
-
10.1063/1.1780605
-
Cannon D.M. Flachsbart B.R. Shannon M.A. Sweedler J.V. Bohn P.W. Fabrication of single nanofluidic channels in poly(methylmethacrylate) films via focused-ion beam milling for use as molecular gates. Appl. Phys. Lett. 2004, 85(7):1241-1243. 10.1063/1.1780605
-
(2004)
Appl. Phys. Lett.
, vol.85
, Issue.7
, pp. 1241-1243
-
-
Cannon, D.M.1
Flachsbart, B.R.2
Shannon, M.A.3
Sweedler, J.V.4
Bohn, P.W.5
-
46
-
-
1642341810
-
Milling of submicron channels on gold layer using double charged arsenic ion beam
-
10.1116/1.1640396
-
Tseng A.A. Insua I.A. Park J.S. Li B. Vakanas G.P. Milling of submicron channels on gold layer using double charged arsenic ion beam. J. Vac. Sci. Technol. B 2004, 22(1):82-89. 10.1116/1.1640396
-
(2004)
J. Vac. Sci. Technol. B
, vol.22
, Issue.1
, pp. 82-89
-
-
Tseng, A.A.1
Insua, I.A.2
Park, J.S.3
Li, B.4
Vakanas, G.P.5
-
47
-
-
65549158381
-
The nanofabrication of polydimethylsiloxane using a focused ion beam
-
10.1088/0957-4484/20/14/145301
-
Guan L. Peng K. Yang Y. Qiu X. Wang C. The nanofabrication of polydimethylsiloxane using a focused ion beam. Nanotechnology 2009, 20(14):145301. 10.1088/0957-4484/20/14/145301
-
(2009)
Nanotechnology
, vol.20
, Issue.14
, pp. 145301
-
-
Guan, L.1
Peng, K.2
Yang, Y.3
Qiu, X.4
Wang, C.5
-
48
-
-
0037666288
-
Nanoscale effects in focused ion beam processing
-
10.1007/s00339-002-1943-1
-
Frey L. Lehrer C. Ryssel H. Nanoscale effects in focused ion beam processing. Appl. Phys. A: Mater. Sci. Process. 2003, 76(7):1017-1023. 10.1007/s00339-002-1943-1
-
(2003)
Appl. Phys. A: Mater. Sci. Process.
, vol.76
, Issue.7
, pp. 1017-1023
-
-
Frey, L.1
Lehrer, C.2
Ryssel, H.3
-
49
-
-
0037292788
-
Focused ion beam fabrication of silicon print masters
-
10.1088/0957-4484/14/2/323
-
Li H.-W. Kang D.-J. Blamire M.G. Huck W.T. Focused ion beam fabrication of silicon print masters. Nanotechnology 2003, 14:220-223. 10.1088/0957-4484/14/2/323
-
(2003)
Nanotechnology
, vol.14
, pp. 220-223
-
-
Li, H.-W.1
Kang, D.-J.2
Blamire, M.G.3
Huck, W.T.4
-
50
-
-
77958609588
-
Nanofluidic single-molecule sorting of DNA: A new concept in separation and analysis of biomolecules towards ultimate level performance
-
10.1088/0957-4484/21/39/395502
-
Yamamoto T. Fujii T. Nanofluidic single-molecule sorting of DNA: A new concept in separation and analysis of biomolecules towards ultimate level performance. Nanotechnology 2010, 21(39):395502. 10.1088/0957-4484/21/39/395502
-
(2010)
Nanotechnology
, vol.21
, Issue.39
, pp. 395502
-
-
Yamamoto, T.1
Fujii, T.2
-
51
-
-
79851472058
-
Fabrication of sub-5 nm nanochannels in insulating substrates using focused ion beam milling
-
10.1021/nl103369g
-
Menard L.D. Ramsey J.M. Fabrication of sub-5 nm nanochannels in insulating substrates using focused ion beam milling. Nano Lett. 2011, 11(2):512-517. 10.1021/nl103369g
-
(2011)
Nano Lett.
, vol.11
, Issue.2
, pp. 512-517
-
-
Menard, L.D.1
Ramsey, J.M.2
-
52
-
-
65449143627
-
A nanofluidic channel with embedded transverse nanoelectrodes
-
10.1088/0957-4484/20/10/105302
-
Maleki T. Mohammadi S. Ziaie B. A nanofluidic channel with embedded transverse nanoelectrodes. Nanotechnology 2009, 20(10):105302. 10.1088/0957-4484/20/10/105302
-
(2009)
Nanotechnology
, vol.20
, Issue.10
, pp. 105302
-
-
Maleki, T.1
Mohammadi, S.2
Ziaie, B.3
-
53
-
-
12344269867
-
Milling yield estimation in focused ion beam milling of two-layer substrates
-
10.1088/0960-1317/15/1/004
-
Tseng A.A. Insua I.A. Park J.-S. Chen C.D. Milling yield estimation in focused ion beam milling of two-layer substrates. J. Micromech. Microeng. 2005, 15(1):20-28. 10.1088/0960-1317/15/1/004
-
(2005)
J. Micromech. Microeng.
, vol.15
, Issue.1
, pp. 20-28
-
-
Tseng, A.A.1
Insua, I.A.2
Park, J.-S.3
Chen, C.D.4
-
54
-
-
79960351162
-
DNA manipulation with elastomeric nanostructures fabricated by soft-moulding of a FIB-patterned stamp
-
10.1039/c1lc20411d
-
Angeli E. Manneschi C. Repetto L. Firpo G. Valbusa U. DNA manipulation with elastomeric nanostructures fabricated by soft-moulding of a FIB-patterned stamp. Lab Chip 2011, 11(15):2625-2629. 10.1039/c1lc20411d
-
(2011)
Lab Chip
, vol.11
, Issue.15
, pp. 2625-2629
-
-
Angeli, E.1
Manneschi, C.2
Repetto, L.3
Firpo, G.4
Valbusa, U.5
-
55
-
-
80051645879
-
DNA detection with a polymeric nanochannel device
-
10.1039/c1lc20243j
-
Fanzio P. Mussi V. Manneschi C. Angeli E. Firpo G. Repetto L. Valbusa U. DNA detection with a polymeric nanochannel device. Lab Chip 2011, 11(17):2961-2966. 10.1039/c1lc20243j
-
(2011)
Lab Chip
, vol.11
, Issue.17
, pp. 2961-2966
-
-
Fanzio, P.1
Mussi, V.2
Manneschi, C.3
Angeli, E.4
Firpo, G.5
Repetto, L.6
Valbusa, U.7
-
56
-
-
80051651069
-
Complete plastic nanofluidic devices for DNA analysis via direct imprinting with polymer stamps
-
10.1039/c1lc20294d
-
Wu J. Chantiwas R. Amirsadeghi A. Soper S.A. Park S. Complete plastic nanofluidic devices for DNA analysis via direct imprinting with polymer stamps. Lab Chip 2011, 11(17):2984-2989. 10.1039/c1lc20294d
-
(2011)
Lab Chip
, vol.11
, Issue.17
, pp. 2984-2989
-
-
Wu, J.1
Chantiwas, R.2
Amirsadeghi, A.3
Soper, S.A.4
Park, S.5
-
57
-
-
34250642011
-
Nanoimprint lithography: Methods and material requirements
-
10.1002/adma.200600882
-
Guo L.J. Nanoimprint lithography: Methods and material requirements. Adv. Mater. 2007, 19(4):495-513. 10.1002/adma.200600882
-
(2007)
Adv. Mater.
, vol.19
, Issue.4
, pp. 495-513
-
-
Guo, L.J.1
-
58
-
-
76949098714
-
Fabrication of micro/nano fluidic system combining hybrid mask-mould lithography with thermal bonding
-
10.1016/j.mee.2009.12.024
-
Li X. Wang X. Jin J. Tang Q. Tian Y. Fu S. Cui Z. Fabrication of micro/nano fluidic system combining hybrid mask-mould lithography with thermal bonding. Microelectron. Eng. 2010, 87(5-8):722-725. 10.1016/j.mee.2009.12.024
-
(2010)
Microelectron. Eng.
, vol.87
, Issue.5-8
, pp. 722-725
-
-
Li, X.1
Wang, X.2
Jin, J.3
Tang, Q.4
Tian, Y.5
Fu, S.6
Cui, Z.7
-
59
-
-
37149004251
-
Stretching and selective immobilization of DNA in SU-8 micro- and nanochannels
-
10.1116/1.2806975
-
Yang B. Dukkipati V.R. Li D. Cardozo B.L. Pang S.W. Stretching and selective immobilization of DNA in SU-8 micro- and nanochannels. J. Vac. Sci. Technol. B 2007, 25(6):2352-2356. 10.1116/1.2806975
-
(2007)
J. Vac. Sci. Technol. B
, vol.25
, Issue.6
, pp. 2352-2356
-
-
Yang, B.1
Dukkipati, V.R.2
Li, D.3
Cardozo, B.L.4
Pang, S.W.5
-
60
-
-
42549083875
-
Stretching DNA in polymer nanochannels fabricated by thermal imprint in PMMA
-
10.1088/0957-4484/19/12/125301
-
Thamdrup L.H. Klukowska A. Kristensen A. Stretching DNA in polymer nanochannels fabricated by thermal imprint in PMMA. Nanotechnology 2008, 19(12):125301. 10.1088/0957-4484/19/12/125301
-
(2008)
Nanotechnology
, vol.19
, Issue.12
, pp. 125301
-
-
Thamdrup, L.H.1
Klukowska, A.2
Kristensen, A.3
-
61
-
-
77956268642
-
Fabrication of high-aspect-ratio polymer nanochannels using a novel Si nanoimprint mold and solvent-assisted sealing
-
10.1007/s10404-009-0509-3
-
Cho Y.H. Park J. Park H. Cheng X. Kim B.J. Han A. Fabrication of high-aspect-ratio polymer nanochannels using a novel Si nanoimprint mold and solvent-assisted sealing. Microfluid. Nanofluid. 2009, 9(2-3):163-170. 10.1007/s10404-009-0509-3
-
(2009)
Microfluid. Nanofluid.
, vol.9
, Issue.2-3
, pp. 163-170
-
-
Cho, Y.H.1
Park, J.2
Park, H.3
Cheng, X.4
Kim, B.J.5
Han, A.6
-
62
-
-
58149308805
-
Sub-10 nm self-enclosed self-limited nanofluidic channel arrays
-
10.1021/nl802219b
-
Xia Q. Morton K.J. Austin R.H. Chou S.Y. Sub-10 nm self-enclosed self-limited nanofluidic channel arrays. Nano Lett. 2008, 8(11):3830-3833. 10.1021/nl802219b
-
(2008)
Nano Lett.
, vol.8
, Issue.11
, pp. 3830-3833
-
-
Xia, Q.1
Morton, K.J.2
Austin, R.H.3
Chou, S.Y.4
-
63
-
-
0842287340
-
Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching
-
10.1021/nl034877i
-
Guo L.J. Cheng X. Chou C.F. Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching. Nano Lett. 2004, 4(1):, 69-73. 10.1021/nl034877i
-
(2004)
Nano Lett.
, vol.4
, Issue.1
, pp. 69-73
-
-
Guo, L.J.1
Cheng, X.2
Chou, C.F.3
-
64
-
-
78149365721
-
Simple replication methods for producing nanoslits in thermoplastics and the transport dynamics of double-stranded DNA through these slits
-
10.1039/c0lc00096e
-
Chantiwas R. Hupert M.L. Pullagurla S.R. Balamurugan S. Tamarit-Lopez J. Park S. Datta P. Goettert J. Cho Y.K. Soper S.A. Simple replication methods for producing nanoslits in thermoplastics and the transport dynamics of double-stranded DNA through these slits. Lab Chip 2010, 10(23):3255-3264. 10.1039/c0lc00096e
-
(2010)
Lab Chip
, vol.10
, Issue.23
, pp. 3255-3264
-
-
Chantiwas, R.1
Hupert, M.L.2
Pullagurla, S.R.3
Balamurugan, S.4
Tamarit-Lopez, J.5
Park, S.6
Datta, P.7
Goettert, J.8
Cho, Y.K.9
Soper, S.A.10
-
65
-
-
84055182564
-
All-silica nanofluidic devices for DNA-analysis fabricated by imprint of sol-gel silica with silicon stamp
-
10.1039/c1lc20689c
-
Mikkelsen M.B. Letailleur A.A. Sondergard E. Barthel E. Teisseire J. Marie R. Kristensen A. All-silica nanofluidic devices for DNA-analysis fabricated by imprint of sol-gel silica with silicon stamp. Lab Chip 2012, 12(2):262-267. 10.1039/c1lc20689c
-
(2012)
Lab Chip
, vol.12
, Issue.2
, pp. 262-267
-
-
Mikkelsen, M.B.1
Letailleur, A.A.2
Sondergard, E.3
Barthel, E.4
Teisseire, J.5
Marie, R.6
Kristensen, A.7
-
66
-
-
80052552859
-
Formation of hierarchical silica nanochannels through nanoimprint lithography.
-
10.1039/c1jm11493j
-
Hendricks N.R. Watkins J.J. Carter K.R. Formation of hierarchical silica nanochannels through nanoimprint lithography. J. Mater. Chem. 2011, 21(37):14213-14218. 10.1039/c1jm11493j
-
(2011)
J. Mater. Chem.
, vol.21
, Issue.37
, pp. 14213-14218
-
-
Hendricks, N.R.1
Watkins, J.J.2
Carter, K.R.3
-
67
-
-
29044442382
-
Sealed three-dimensional nanochannels
-
10.1116/1.2121728
-
Reano R.M. Pang S.W. Sealed three-dimensional nanochannels. J. Vac. Sci. Technol. B 2005, 23(6):2995-2999. 10.1116/1.2121728
-
(2005)
J. Vac. Sci. Technol. B
, vol.23
, Issue.6
, pp. 2995-2999
-
-
Reano, R.M.1
Pang, S.W.2
-
68
-
-
46749110844
-
Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis
-
10.1021/nl080473k
-
Liang X. Chou S.Y. Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis. Nano Lett. 2008, 8(5):1472-1476. 10.1021/nl080473k
-
(2008)
Nano Lett.
, vol.8
, Issue.5
, pp. 1472-1476
-
-
Liang, X.1
Chou, S.Y.2
-
69
-
-
78650843200
-
Nanostructures and functional materials fabricated by interferometric lithography
-
10.1002/adma.201001856
-
Xia D. Ku Z. Lee S.C. Brueck S.R. Nanostructures and functional materials fabricated by interferometric lithography. Adv. Mater. 2011, 23(2):147-179. 10.1002/adma.201001856
-
(2011)
Adv. Mater.
, vol.23
, Issue.2
, pp. 147-179
-
-
Xia, D.1
Ku, Z.2
Lee, S.C.3
Brueck, S.R.4
-
70
-
-
38849093274
-
Monitoring FET flow control and wall adsorption of charged fluorescent dye molecules in nanochannels integrated into a multiple internal reflection infrared waveguide
-
10.1039/b711682a
-
Oh Y.J. Gamble T.C. Leonhardt D. Chung C.H. Brueck S.R. Ivory C.F. Lopez G.P. Petsev D.N. Han S.M. Monitoring FET flow control and wall adsorption of charged fluorescent dye molecules in nanochannels integrated into a multiple internal reflection infrared waveguide. Lab Chip 2008, 8(2):251-258. 10.1039/b711682a
-
(2008)
Lab Chip
, vol.8
, Issue.2
, pp. 251-258
-
-
Oh, Y.J.1
Gamble, T.C.2
Leonhardt, D.3
Chung, C.H.4
Brueck, S.R.5
Ivory, C.F.6
Lopez, G.P.7
Petsev, D.N.8
Han, S.M.9
-
71
-
-
66149105797
-
Impact of leakage current and electrolysis on FET flow control and pH changes in nanofluidic channels
-
10.1039/b816384g
-
Oh Y.J. Bottenus D. Ivory C.F. Han S.M. Impact of leakage current and electrolysis on FET flow control and pH changes in nanofluidic channels. Lab Chip 2009, 9(11):1609-1617. 10.1039/b816384g
-
(2009)
Lab Chip
, vol.9
, Issue.11
, pp. 1609-1617
-
-
Oh, Y.J.1
Bottenus, D.2
Ivory, C.F.3
Han, S.M.4
-
72
-
-
0942289208
-
Fabrication of an integrated nanofluidic chip using interferometric lithography
-
10.1116/1.1625964
-
O'Brien M.J. Bisong P. Ista L.K. Rabinovich E.M. Garcia A.L. Sibbett S.S. Lopez G.P. Brueck S.R. J. Fabrication of an integrated nanofluidic chip using interferometric lithography. J. Vac. Sci. Technol. B 2003, 21(6):2941-2945. 10.1116/1.1625964
-
(2003)
J. Vac. Sci. Technol. B
, vol.21
, Issue.6
, pp. 2941-2945
-
-
O'Brien, M.J.1
Bisong, P.2
Ista, L.K.3
Rabinovich, E.M.4
Garcia, A.L.5
Sibbett, S.S.6
Lopez, G.P.7
Brueck, S.R.J.8
-
73
-
-
62749107653
-
Experimentally and theoretically observed native pH shifts in a nanochannel array
-
10.1039/b803278e
-
Bottenus D. Oh Y.J. Han S.M. Ivory C.F. Experimentally and theoretically observed native pH shifts in a nanochannel array. Lab Chip 2009, 9(2):219-231. 10.1039/b803278e
-
(2009)
Lab Chip
, vol.9
, Issue.2
, pp. 219-231
-
-
Bottenus, D.1
Oh, Y.J.2
Han, S.M.3
Ivory, C.F.4
-
74
-
-
27744605320
-
Electrokinetic molecular separation in nanoscale fluidic channels
-
10.1039/b503914b
-
Garcia A.L. Ista L.K. Petsev D.N. O'Brien M.J. Bisong P. Mammoli A.A. Brueck S.R. Lopez G.P. Electrokinetic molecular separation in nanoscale fluidic channels. Lab Chip 2005, 5(11):1271-1276. 10.1039/b503914b
-
(2005)
Lab Chip
, vol.5
, Issue.11
, pp. 1271-1276
-
-
Garcia, A.L.1
Ista, L.K.2
Petsev, D.N.3
O'Brien, M.J.4
Bisong, P.5
Mammoli, A.A.6
Brueck, S.R.7
Lopez, G.P.8
-
75
-
-
66149171649
-
Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control
-
10.1039/b901382m
-
Oh Y.J. Garcia A.L. Petsev D.N. Lopez G.P. Brueck S.R. Ivory C.F. Han S.M. Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control. Lab Chip 2009, 9(11):1601-1608. 10.1039/b901382m
-
(2009)
Lab Chip
, vol.9
, Issue.11
, pp. 1601-1608
-
-
Oh, Y.J.1
Garcia, A.L.2
Petsev, D.N.3
Lopez, G.P.4
Brueck, S.R.5
Ivory, C.F.6
Han, S.M.7
-
76
-
-
52649119400
-
Electric field control and analyte transport in Si/SiO2 fluidic nanochannels
-
10.1039/b804256j
-
Zhang Y. Gamble T.C. Neumann A. Lopez G.P. Brueck S.R. Petsev D.N. Electric field control and analyte transport in Si/SiO2 fluidic nanochannels. Lab Chip 2008, 8(10):1671-1675. 10.1039/b804256j
-
(2008)
Lab Chip
, vol.8
, Issue.10
, pp. 1671-1675
-
-
Zhang, Y.1
Gamble, T.C.2
Neumann, A.3
Lopez, G.P.4
Brueck, S.R.5
Petsev, D.N.6
-
77
-
-
79955422145
-
Nanochannel confinement: DNA stretch approaching full contour length
-
10.1039/c0lc00680g
-
Kim Y. Kim K.S. Kounovsky K.L. Chang R. Jung G.Y. dePablo J.J. Jo K. Schwartz D.C. Nanochannel confinement: DNA stretch approaching full contour length. Lab Chip 2011, 11(10):1721-1729. 10.1039/c0lc00680g
-
(2011)
Lab Chip
, vol.11
, Issue.10
, pp. 1721-1729
-
-
Kim, Y.1
Kim, K.S.2
Kounovsky, K.L.3
Chang, R.4
Jung, G.Y.5
dePablo, J.J.6
Jo, K.7
Schwartz, D.C.8
-
78
-
-
77954761612
-
Super permeable nano-channel membranes defined with laser interferometric lithography
-
10.1007/s10404-009-0537-z
-
Elman N.M. Daniel K. Jalali-Yazdi F. Cima M.J. Super permeable nano-channel membranes defined with laser interferometric lithography. Microfluid. Nanofluid. 2009, 8(4):557-563. 10.1007/s10404-009-0537-z
-
(2009)
Microfluid. Nanofluid.
, vol.8
, Issue.4
, pp. 557-563
-
-
Elman, N.M.1
Daniel, K.2
Jalali-Yazdi, F.3
Cima, M.J.4
-
79
-
-
80053470701
-
Real-time template-assisted manipulation of nanoparticles in a multilayer nanofluidic chip
-
10.1002/smll.201100264
-
Chen H.M. Pang L. Gordon M.S. Fainman Y. Real-time template-assisted manipulation of nanoparticles in a multilayer nanofluidic chip. Small 2011, 7(19):2750-2757. 10.1002/smll.201100264
-
(2011)
Small
, vol.7
, Issue.19
, pp. 2750-2757
-
-
Chen, H.M.1
Pang, L.2
Gordon, M.S.3
Fainman, Y.4
-
80
-
-
59349112590
-
Colloidal lithography-The art of nanochemical patterning
-
10.1002/asia.200800298
-
Zhang G. Wang D. Colloidal lithography-The art of nanochemical patterning. Chem. Asian J. 2009, 4(2):236-245. 10.1002/asia.200800298
-
(2009)
Chem. Asian J.
, vol.4
, Issue.2
, pp. 236-245
-
-
Zhang, G.1
Wang, D.2
-
81
-
-
39849090680
-
Ordered micro/nanostructured arrays based on the monolayer colloidal crystals
-
10.1021/cm701977g
-
Li Y. Cai W. Duan G. Ordered micro/nanostructured arrays based on the monolayer colloidal crystals. Chem. Mater. 2008, 20(3):615-624. 10.1021/cm701977g
-
(2008)
Chem. Mater.
, vol.20
, Issue.3
, pp. 615-624
-
-
Li, Y.1
Cai, W.2
Duan, G.3
-
82
-
-
84858976221
-
From soft to hard: The generation of functional and complex colloidal monolayers for nanolithography
-
10.1039/c1sm06650a
-
Vogel N. Weiss C.K. Landfester K. From soft to hard: The generation of functional and complex colloidal monolayers for nanolithography. Soft Matter 2012, 8(15):4044. 10.1039/c1sm06650a
-
(2012)
Soft Matter
, vol.8
, Issue.15
, pp. 4044
-
-
Vogel, N.1
Weiss, C.K.2
Landfester, K.3
-
83
-
-
4444306296
-
Sub-100 nm triangular nanopores fabricated with the reactive ion etching variant of nanosphere lithography and angle-resolved nanosphere lithography
-
10.1021/nl049345w
-
Whitney A.V. Myers B.D. Van Duyne R.P. Sub-100 nm triangular nanopores fabricated with the reactive ion etching variant of nanosphere lithography and angle-resolved nanosphere lithography. Nano Lett. 2004, 4(8):1507-1511. 10.1021/nl049345w
-
(2004)
Nano Lett.
, vol.4
, Issue.8
, pp. 1507-1511
-
-
Whitney, A.V.1
Myers, B.D.2
Van Duyne, R.P.3
-
84
-
-
0027005198
-
Mechanism of formation of two-dimensional crystals from latex particles on substrates
-
10.1021/la00048a054
-
Denkov N. Velev O. Kralchevski P. Ivanov I. Yoshimura H. Nagayama K. Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir 1992, 8(12):3183-3190. 10.1021/la00048a054
-
(1992)
Langmuir
, vol.8
, Issue.12
, pp. 3183-3190
-
-
Denkov, N.1
Velev, O.2
Kralchevski, P.3
Ivanov, I.4
Yoshimura, H.5
Nagayama, K.6
-
85
-
-
33644663404
-
Spontaneous formation of nanoparticle stripe patterns through dewetting
-
10.1038/nmat1517
-
Huang J. Kim F. Tao A.R. Connor S. Yang P. Spontaneous formation of nanoparticle stripe patterns through dewetting. Nature Mater. 2005, 4(12):896-900. 10.1038/nmat1517
-
(2005)
Nature Mater.
, vol.4
, Issue.12
, pp. 896-900
-
-
Huang, J.1
Kim, F.2
Tao, A.R.3
Connor, S.4
Yang, P.5
-
86
-
-
53349143988
-
Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching
-
10.1063/1.2988893
-
Hsu C.-M. Connor S.T. Tang M.X. Cui Y. Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching. Appl. Phys. Lett. 2008, 93(13):133109. 10.1063/1.2988893
-
(2008)
Appl. Phys. Lett.
, vol.93
, Issue.13
, pp. 133109
-
-
Hsu, C.-M.1
Connor, S.T.2
Tang, M.X.3
Cui, Y.4
-
87
-
-
77955563758
-
Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications
-
10.1021/nl101432r
-
Jeong S. Hu L. Lee H.R. Garnett E. Choi J.W. Cui Y. Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications. Nano Lett. 2010, 10(8):2989-2994. 10.1021/nl101432r
-
(2010)
Nano Lett.
, vol.10
, Issue.8
, pp. 2989-2994
-
-
Jeong, S.1
Hu, L.2
Lee, H.R.3
Garnett, E.4
Choi, J.W.5
Cui, Y.6
-
88
-
-
45749133886
-
Self-supporting nanopore membranes with controlled pore size and shape
-
10.1021/nn8000017
-
Lu Z.X. Namboodiri A. Collinson M.M. Self-supporting nanopore membranes with controlled pore size and shape. ACS Nano 2008, 2(5):993-999. 10.1021/nn8000017
-
(2008)
ACS Nano
, vol.2
, Issue.5
, pp. 993-999
-
-
Lu, Z.X.1
Namboodiri, A.2
Collinson, M.M.3
-
89
-
-
0001223244
-
Nanochannel fabrication for chemical sensors
-
10.1116/1.589750
-
Stern M.B. Geis M.W. Curtin J.E. Nanochannel fabrication for chemical sensors. J. Vac. Sci. Technol. B 1997, 15(6):2887-2891. 10.1116/1.589750
-
(1997)
J. Vac. Sci. Technol. B
, vol.15
, Issue.6
, pp. 2887-2891
-
-
Stern, M.B.1
Geis, M.W.2
Curtin, J.E.3
-
90
-
-
19944383809
-
Electrostatic control of ions and molecules in nanofluidic transistors
-
10.1021/nl050493b
-
Karnik R. Fan R. Yue M. Li D. Yang P. Majumdar A. Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett. 2005, 5(5):943-948. 10.1021/nl050493b
-
(2005)
Nano Lett.
, vol.5
, Issue.5
, pp. 943-948
-
-
Karnik, R.1
Fan, R.2
Yue, M.3
Li, D.4
Yang, P.5
Majumdar, A.6
-
91
-
-
25844442065
-
Effects of biological reactions and modifications on conductance of nanofluidic channels
-
10.1021/nl050966e
-
Karnik R. Castelino K. Fan R. Yang P. Majumdar A. Effects of biological reactions and modifications on conductance of nanofluidic channels. Nano Lett. 2005, 5(9):1638-1642. 10.1021/nl050966e
-
(2005)
Nano Lett.
, vol.5
, Issue.9
, pp. 1638-1642
-
-
Karnik, R.1
Castelino, K.2
Fan, R.3
Yang, P.4
Majumdar, A.5
-
92
-
-
33645513029
-
Field-effect control of protein transport in a nanofluidic transistor circuit
-
10.1063/1.2186967
-
Karnik R. Castelino K. Majumdar A. Field-effect control of protein transport in a nanofluidic transistor circuit. Appl. Phys. Lett. 2006, 88(12):123114. 10.1063/1.2186967
-
(2006)
Appl. Phys. Lett.
, vol.88
, Issue.12
, pp. 123114
-
-
Karnik, R.1
Castelino, K.2
Majumdar, A.3
-
93
-
-
34047096978
-
Rectification of ionic current in a nanofluidic diode
-
10.1021/nl062806o
-
Karnik R. Duan C. Castelino K. Daiguji H. Majumdar A. Rectification of ionic current in a nanofluidic diode. Nano Lett. 2007, 7(3):547-551. 10.1021/nl062806o
-
(2007)
Nano Lett.
, vol.7
, Issue.3
, pp. 547-551
-
-
Karnik, R.1
Duan, C.2
Castelino, K.3
Daiguji, H.4
Majumdar, A.5
-
94
-
-
36248992516
-
Rectified ion transport through concentration gradient in homogeneous silica nanochannels
-
10.1021/nl071770c
-
Cheng L.J. Guo L.J. Rectified ion transport through concentration gradient in homogeneous silica nanochannels. Nano Lett. 2007, 7(10):3165-3171. 10.1021/nl071770c
-
(2007)
Nano Lett.
, vol.7
, Issue.10
, pp. 3165-3171
-
-
Cheng, L.J.1
Guo, L.J.2
-
95
-
-
77953319235
-
Fabrication of a nanomechanical mass sensor containing a nanofluidic channel
-
10.1021/nl100193g
-
Barton R.A. Ilic B. Verbridge S.S. Cipriany B.R. Parpia J.M. Craighead H.G. Fabrication of a nanomechanical mass sensor containing a nanofluidic channel. Nano Lett. 2010, 10(6):2058-2063. 10.1021/nl100193g
-
(2010)
Nano Lett.
, vol.10
, Issue.6
, pp. 2058-2063
-
-
Barton, R.A.1
Ilic, B.2
Verbridge, S.S.3
Cipriany, B.R.4
Parpia, J.M.5
Craighead, H.G.6
-
96
-
-
33644934191
-
Fabrication and electroosmotic flow measurements in micro- and nanofluidic channels
-
10.1007/s10404-005-0051-x
-
Hug T.S. de Rooij N.F. Staufer U. Fabrication and electroosmotic flow measurements in micro- and nanofluidic channels. Microfluid. Nanofluid. 2006, 2(2):117-124. 10.1007/s10404-005-0051-x
-
(2006)
Microfluid. Nanofluid.
, vol.2
, Issue.2
, pp. 117-124
-
-
Hug, T.S.1
de Rooij, N.F.2
Staufer, U.3
-
97
-
-
84857948974
-
Micromachined nanofiltration modules for lab-on-a-chip applications
-
10.1088/0960-1317/22/2/025003
-
Shen C. Mokkapati V.R. S. S. Pham H.T. M. Sarro P.M. Micromachined nanofiltration modules for lab-on-a-chip applications. J. Micromech. Microeng. 2012, 22(2):025003. 10.1088/0960-1317/22/2/025003
-
(2012)
J. Micromech. Microeng.
, vol.22
, Issue.2
, pp. 025003
-
-
Shen, C.1
Mokkapati, V.R.S.S.2
Pham, H.T.M.3
Sarro, P.M.4
-
98
-
-
3142769705
-
1-D nanochannels fabricated in polyimide
-
10.1039/b315859d
-
Eijkel J.C. Bomer J. Tas N.R. van den Berg A. 1-D nanochannels fabricated in polyimide. Lab Chip 2004, 4(3):161-163. 10.1039/b315859d
-
(2004)
Lab Chip
, vol.4
, Issue.3
, pp. 161-163
-
-
Eijkel, J.C.1
Bomer, J.2
Tas, N.R.3
van den Berg, A.4
-
99
-
-
79959910726
-
Capillary flow in sacrificially etched nanochannels
-
10.1063/1.3602858
-
Hamblin M.N. Hawkins A.R. Murray D. Maynes D. Lee M.L. Woolley A.T. Tolley H.D. Capillary flow in sacrificially etched nanochannels. Biomicrofluidics 2011, 5(2):021103. 10.1063/1.3602858
-
(2011)
Biomicrofluidics
, vol.5
, Issue.2
, pp. 021103
-
-
Hamblin, M.N.1
Hawkins, A.R.2
Murray, D.3
Maynes, D.4
Lee, M.L.5
Woolley, A.T.6
Tolley, H.D.7
-
100
-
-
37349125174
-
Nanochannels in SU-8 with floor and ceiling metal electrodes and integrated microchannels
-
10.1039/b715917j
-
Nichols K.P. Eijkel J.C. Gardeniers H.J. Nanochannels in SU-8 with floor and ceiling metal electrodes and integrated microchannels. Lab Chip 2008, 8(1):173-175. 10.1039/b715917j
-
(2008)
Lab Chip
, vol.8
, Issue.1
, pp. 173-175
-
-
Nichols, K.P.1
Eijkel, J.C.2
Gardeniers, H.J.3
-
101
-
-
79960281274
-
Stochastic sensing of single molecules in a nanofluidic electrochemical device
-
10.1021/nl2013423
-
Zevenbergen M.A. Singh P.S. Goluch E.D. Wolfrum B.L. Lemay S.G. Stochastic sensing of single molecules in a nanofluidic electrochemical device. Nano Lett. 2011, 11(7):2881-2886. 10.1021/nl2013423
-
(2011)
Nano Lett.
, vol.11
, Issue.7
, pp. 2881-2886
-
-
Zevenbergen, M.A.1
Singh, P.S.2
Goluch, E.D.3
Wolfrum, B.L.4
Lemay, S.G.5
-
102
-
-
73149089074
-
Selective trapping and concentration of nanoparticles and viruses in dual-height nanofluidic channels
-
10.1039/b916746c
-
Hamblin M.N. Xuan J. Maynes D. Tolley H.D. Belnap D.M. Woolley A.T. Lee M.L. Hawkins A.R. Selective trapping and concentration of nanoparticles and viruses in dual-height nanofluidic channels. Lab Chip 2010, 10(2):173-178. 10.1039/b916746c
-
(2010)
Lab Chip
, vol.10
, Issue.2
, pp. 173-178
-
-
Hamblin, M.N.1
Xuan, J.2
Maynes, D.3
Tolley, H.D.4
Belnap, D.M.5
Woolley, A.T.6
Lee, M.L.7
Hawkins, A.R.8
-
103
-
-
40049104721
-
Rapid sacrificial layer etching for the fabrication of nanochannels with integrated metal electrodes
-
10.1039/b716382g
-
Sparreboom W. Eijkel J.C. Bomer J. van den Berg A. Rapid sacrificial layer etching for the fabrication of nanochannels with integrated metal electrodes. Lab Chip 2008, 8(3):402-407. 10.1039/b716382g
-
(2008)
Lab Chip
, vol.8
, Issue.3
, pp. 402-407
-
-
Sparreboom, W.1
Eijkel, J.C.2
Bomer, J.3
van den Berg, A.4
-
104
-
-
66149125534
-
Vertical arrays of nanofluidic channels fabricated without nanolithography
-
10.1039/b819520j
-
Sordan R. Miranda A. Traversi F. Colombo D. Chrastina D. Isella G. Masserini M. Miglio L. Kern K. Balasubramanian K. Vertical arrays of nanofluidic channels fabricated without nanolithography. Lab Chip 2009, 9(11):1556-1560. 10.1039/b819520j
-
(2009)
Lab Chip
, vol.9
, Issue.11
, pp. 1556-1560
-
-
Sordan, R.1
Miranda, A.2
Traversi, F.3
Colombo, D.4
Chrastina, D.5
Isella, G.6
Masserini, M.7
Miglio, L.8
Kern, K.9
Balasubramanian, K.10
-
105
-
-
33746626949
-
Fabrication of micro/nano fluidic channels with sacrificial galvanic coupled metals
-
10.1088/0957-4484/17/13/018
-
Zeng H. Wan Z. Feinerman A.D. Fabrication of micro/nano fluidic channels with sacrificial galvanic coupled metals. Nanotechnology 2006, 17(13):3183-3188. 10.1088/0957-4484/17/13/018
-
(2006)
Nanotechnology
, vol.17
, Issue.13
, pp. 3183-3188
-
-
Zeng, H.1
Wan, Z.2
Feinerman, A.D.3
-
106
-
-
33746506148
-
Three-dimensional nanochannels formed by fast etching of polymer
-
10.1116/1.2221319
-
Peng C. Pang S.W. Three-dimensional nanochannels formed by fast etching of polymer. J. Vac. Sci. Technol. B 2006, 24(4):1941-1946. 10.1116/1.2221319
-
(2006)
J. Vac. Sci. Technol. B
, vol.24
, Issue.4
, pp. 1941-1946
-
-
Peng, C.1
Pang, S.W.2
-
107
-
-
41149139892
-
Electrokinetics induced asymmetric transport in polymeric nanonozzles
-
10.1039/b719410b
-
Wang S. Hu X. Lee L.J. Electrokinetics induced asymmetric transport in polymeric nanonozzles. Lab Chip 2008, 8(4):573-581. 10.1039/b719410b
-
(2008)
Lab Chip
, vol.8
, Issue.4
, pp. 573-581
-
-
Wang, S.1
Hu, X.2
Lee, L.J.3
-
108
-
-
53349156594
-
Nanochannels fabricated in polydimethylsiloxane using sacrificial electrospun polyethylene oxide nanofibers
-
10.1116/1.2975199
-
Bellan L.M. Strychalski E.A. Craighead H.G. Nanochannels fabricated in polydimethylsiloxane using sacrificial electrospun polyethylene oxide nanofibers. J. Vac. Sci. Technol. B 2008, 26(5):1728-1731. 10.1116/1.2975199
-
(2008)
J. Vac. Sci. Technol. B
, vol.26
, Issue.5
, pp. 1728-1731
-
-
Bellan, L.M.1
Strychalski, E.A.2
Craighead, H.G.3
-
110
-
-
77957561593
-
Large laterally ordered nanochannel arrays from DNA combing and imprinting
-
10.1002/adma.201000136
-
Guan J. Boukany P.E. Hemminger O. Chiou N.R. Zha W. Cavanaugh M. Lee L.J. Large laterally ordered nanochannel arrays from DNA combing and imprinting. Adv. Mater. 2010, 22(36):3997-4001. 10.1002/adma.201000136
-
(2010)
Adv. Mater.
, vol.22
, Issue.36
, pp. 3997-4001
-
-
Guan, J.1
Boukany, P.E.2
Hemminger, O.3
Chiou, N.R.4
Zha, W.5
Cavanaugh, M.6
Lee, L.J.7
-
111
-
-
80755159634
-
Nanochannel electroporation delivers precise amounts of biomolecules into living cells
-
10.1038/nnano.2011.164
-
Boukany P.E. Morss A. Liao W.C. Henslee B. Jung H. Zhang X. Yu B. Wang X. Wu Y. Li L. Gao K. Hu X. Zhao X. Hemminger O. Lu W. Lafyatis G.P. Lee L.J. Nanochannel electroporation delivers precise amounts of biomolecules into living cells. Nat. Nanotechnol. 2011, 6(11):747-754. 10.1038/nnano.2011.164
-
(2011)
Nat. Nanotechnol.
, vol.6
, Issue.11
, pp. 747-754
-
-
Boukany, P.E.1
Morss, A.2
Liao, W.C.3
Henslee, B.4
Jung, H.5
Zhang, X.6
Yu, B.7
Wang, X.8
Wu, Y.9
Li, L.10
Gao, K.11
Hu, X.12
Zhao, X.13
Hemminger, O.14
Lu, W.15
Lafyatis, G.P.16
Lee, L.J.17
-
112
-
-
78650135868
-
Fabricating millimeter to nanometer sized cavities concurrently for nanofluidic devices
-
10.1116/1.3517701
-
Devlin N.R. Brown D.K. Fabricating millimeter to nanometer sized cavities concurrently for nanofluidic devices. J. Vac. Sci. Technol. B 2010, 28(6):C6I7-C6I10. 10.1116/1.3517701
-
(2010)
J. Vac. Sci. Technol. B
, vol.28
, Issue.6
-
-
Devlin, N.R.1
Brown, D.K.2
-
113
-
-
72849113887
-
Patterning decomposable polynorbornene with electron beam lithography to create nanochannels
-
10.1116/1.3264658
-
Devlin N.R. Brown D.K. Kohl P.A. Patterning decomposable polynorbornene with electron beam lithography to create nanochannels. J. Vac. Sci. Technol. B 2009, 27(6):2508-2511. 10.1116/1.3264658
-
(2009)
J. Vac. Sci. Technol. B
, vol.27
, Issue.6
, pp. 2508-2511
-
-
Devlin, N.R.1
Brown, D.K.2
Kohl, P.A.3
-
114
-
-
0035519775
-
Heat-depolymerizable polycarbonates as electron beam patternable sacrificial layers for nanofluidics
-
10.1116/1.1409383
-
Harnett C.K. Coates G.W. Craighead H.G. Heat-depolymerizable polycarbonates as electron beam patternable sacrificial layers for nanofluidics. J. Vac. Sci. Technol. B 2001, 19(6):2842-2845. 10.1116/1.1409383
-
(2001)
J. Vac. Sci. Technol. B
, vol.19
, Issue.6
, pp. 2842-2845
-
-
Harnett, C.K.1
Coates, G.W.2
Craighead, H.G.3
-
115
-
-
81455153170
-
A novel fabrication method for centimeter-long surface-micromachined nanochannels
-
10.1088/0960-1317/20/1/015040
-
Huang X.T. Gupta C. Pennathur S. A novel fabrication method for centimeter-long surface-micromachined nanochannels. J. Micromech. Microeng. 2010, 20(1):015040. 10.1088/0960-1317/20/1/015040
-
(2010)
J. Micromech. Microeng.
, vol.20
, Issue.1
, pp. 015040
-
-
Huang, X.T.1
Gupta, C.2
Pennathur, S.3
-
116
-
-
83355173934
-
Wafer-scale thin encapsulated two-dimensional nanochannels and its application toward visualization of single molecules
-
10.1016/j.jcis.2011.10.001
-
Hoang H.T. Tong H.D. Segers-Nolten I.M. Tas N.R. Subramaniam V. Elwenspoek M.C. Wafer-scale thin encapsulated two-dimensional nanochannels and its application toward visualization of single molecules. J. Colloid Interface Sci. 2012, 367(1):455-459. 10.1016/j.jcis.2011.10.001
-
(2012)
J. Colloid Interface Sci.
, vol.367
, Issue.1
, pp. 455-459
-
-
Hoang, H.T.1
Tong, H.D.2
Segers-Nolten, I.M.3
Tas, N.R.4
Subramaniam, V.5
Elwenspoek, M.C.6
-
117
-
-
84555177211
-
Gated and near-surface diffusion of charged fullerenes in nanochannels
-
10.1021/nn2037863
-
Grattoni A. Fine D. Zabre E. Ziemys A. Gill J. Mackeyev Y. Cheney M.A. Danila D.C. Hosali S. Wilson L.J. Hussain F. Ferrari M. Gated and near-surface diffusion of charged fullerenes in nanochannels. ACS Nano 2011, 5(12):9382-9391. 10.1021/nn2037863
-
(2011)
ACS Nano
, vol.5
, Issue.12
, pp. 9382-9391
-
-
Grattoni, A.1
Fine, D.2
Zabre, E.3
Ziemys, A.4
Gill, J.5
Mackeyev, Y.6
Cheney, M.A.7
Danila, D.C.8
Hosali, S.9
Wilson, L.J.10
Hussain, F.11
Ferrari, M.12
-
118
-
-
68249144833
-
Fabrication and interfacing of nanochannel devices for single-molecule studies
-
10.1088/0960-1317/19/6/065017
-
Hoang H.T. Segers-Nolten I.M. Berenschot J.W. de Boer M.J. Tas N.R. Haneveld J. Elwenspoek M.C. Fabrication and interfacing of nanochannel devices for single-molecule studies. J. Micromech. Microeng. 2009, 19(6):065017. 10.1088/0960-1317/19/6/065017
-
(2009)
J. Micromech. Microeng.
, vol.19
, Issue.6
, pp. 065017
-
-
Hoang, H.T.1
Segers-Nolten, I.M.2
Berenschot, J.W.3
de Boer, M.J.4
Tas, N.R.5
Haneveld, J.6
Elwenspoek, M.C.7
-
120
-
-
34247868965
-
An optofluidic device for surface enhanced Raman spectroscopy
-
10.1039/b618105h
-
Wang M. Jing N. Chou I.H. Cote G.L. Kameoka J. An optofluidic device for surface enhanced Raman spectroscopy. Lab Chip 2007, 7(5):630-632. 10.1039/b618105h
-
(2007)
Lab Chip
, vol.7
, Issue.5
, pp. 630-632
-
-
Wang, M.1
Jing, N.2
Chou, I.H.3
Cote, G.L.4
Kameoka, J.5
-
121
-
-
40049112986
-
Pre-binding dynamic range and sensitivity enhancement for immuno-sensors using nanofluidic preconcentrator
-
10.1039/b717220f
-
Wang Y.C. Han J. Pre-binding dynamic range and sensitivity enhancement for immuno-sensors using nanofluidic preconcentrator. Lab Chip 2008, 8(3):392-394. 10.1039/b717220f
-
(2008)
Lab Chip
, vol.8
, Issue.3
, pp. 392-394
-
-
Wang, Y.C.1
Han, J.2
-
123
-
-
41149164294
-
Non-equilibrium electrokinetic micro/nano fluidic mixer
-
10.1039/b717268k
-
Kim D. Raj A. Zhu L. Masel R.I. Shannon M.A. Non-equilibrium electrokinetic micro/nano fluidic mixer. Lab Chip 2008, 8(4):625-628. 10.1039/b717268k
-
(2008)
Lab Chip
, vol.8
, Issue.4
, pp. 625-628
-
-
Kim, D.1
Raj, A.2
Zhu, L.3
Masel, R.I.4
Shannon, M.A.5
-
124
-
-
84860886525
-
Millisecond-order rapid micromixing with non-equilibrium electrokinetic phenomena
-
10.1007/s10404-011-0918-y
-
Lee S.J. Kim D. Millisecond-order rapid micromixing with non-equilibrium electrokinetic phenomena. Microfluid. Nanofluid. 2011, 12:897-906. 10.1007/s10404-011-0918-y
-
(2011)
Microfluid. Nanofluid.
, vol.12
, pp. 897-906
-
-
Lee, S.J.1
Kim, D.2
-
125
-
-
78650015802
-
Anomalous ion transport in 2-nm hydrophilic nanochannels
-
10.1038/nnano.2010.233
-
Duan C. Majumdar A. Anomalous ion transport in 2-nm hydrophilic nanochannels. Nat. Nanotechnol. 2010, 5(12):848-852. 10.1038/nnano.2010.233
-
(2010)
Nat. Nanotechnol.
, vol.5
, Issue.12
, pp. 848-852
-
-
Duan, C.1
Majumdar, A.2
-
126
-
-
33947660099
-
Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding
-
10.1039/b616134k
-
Abgrall P. Low L.N. Nguyen N.T. Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding. Lab Chip 2007, 7(4):520-522. 10.1039/b616134k
-
(2007)
Lab Chip
, vol.7
, Issue.4
, pp. 520-522
-
-
Abgrall, P.1
Low, L.N.2
Nguyen, N.T.3
-
127
-
-
52949121370
-
Formation of ionic depletion/enrichment zones in a hybrid micro-/nano-channel
-
10.1007/s10404-008-0281-9
-
Huang K.-D. Yang R.-J. Formation of ionic depletion/enrichment zones in a hybrid micro-/nano-channel. Microfluid. Nanofluid. 2008, 5(5):631-638. 10.1007/s10404-008-0281-9
-
(2008)
Microfluid. Nanofluid.
, vol.5
, Issue.5
, pp. 631-638
-
-
Huang, K.-D.1
Yang, R.-J.2
-
128
-
-
69249228545
-
Research on forming and application of U-form glass micro-nanofluidic chip with long nanochannels
-
10.1007/s10404-009-0407-8
-
Xu Z. Wen J.-K. Liu C. Liu J.-S. Du L.-Q. Wang L.-D. Research on forming and application of U-form glass micro-nanofluidic chip with long nanochannels. Microfluid. Nanofluid. 2009, 7(3):423-429. 10.1007/s10404-009-0407-8
-
(2009)
Microfluid. Nanofluid.
, vol.7
, Issue.3
, pp. 423-429
-
-
Xu, Z.1
Wen, J.-K.2
Liu, C.3
Liu, J.-S.4
Du, L.-Q.5
Wang, L.-D.6
-
129
-
-
84855947884
-
Scalable attoliter monodisperse droplet formation using multiphase nano-microfluidics
-
10.1007/s10404-011-0776-7
-
Shui L. Berg A. Eijkel J.C. T. Scalable attoliter monodisperse droplet formation using multiphase nano-microfluidics. Microfluid. Nanofluid. 2011, 11(1):87-92. 10.1007/s10404-011-0776-7
-
(2011)
Microfluid. Nanofluid.
, vol.11
, Issue.1
, pp. 87-92
-
-
Shui, L.1
Berg, A.2
Eijkel, J.C.T.3
-
130
-
-
3042754182
-
Ion-enrichment and ion-depletion effect of nanochannel structures
-
10.1021/nl0494811
-
Pu Q.S. Yun J.S. Temkin H. Liu S.R. Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett. 2004, 4(6):1099-1103. 10.1021/nl0494811
-
(2004)
Nano Lett.
, vol.4
, Issue.6
, pp. 1099-1103
-
-
Pu, Q.S.1
Yun, J.S.2
Temkin, H.3
Liu, S.R.4
-
131
-
-
23144436386
-
From nanochannel-induced proton conduction enhancement to a nanochannel-based fuel cell
-
10.1021/nl050712t
-
Liu S. Pu Q. Gao L. Korzeniewski C. Matzke C. From nanochannel-induced proton conduction enhancement to a nanochannel-based fuel cell. Nano Lett. 2005, 5(7):1389-1393. 10.1021/nl050712t
-
(2005)
Nano Lett.
, vol.5
, Issue.7
, pp. 1389-1393
-
-
Liu, S.1
Pu, Q.2
Gao, L.3
Korzeniewski, C.4
Matzke, C.5
-
132
-
-
38049155574
-
Electrical detection of fast reaction kinetics in nanochannels with an induced flow
-
10.1021/nl0724788
-
Schoch R.B. Cheow L.F. Han J. Electrical detection of fast reaction kinetics in nanochannels with an induced flow. Nano Lett. 2007, 7(12):3895-3900. 10.1021/nl0724788
-
(2007)
Nano Lett.
, vol.7
, Issue.12
, pp. 3895-3900
-
-
Schoch, R.B.1
Cheow, L.F.2
Han, J.3
-
133
-
-
80755159079
-
Effect of nanochannel geometry on DNA structure in the presence of macromolecular crowding agent
-
10.1021/nl203114f
-
Jones J.J. van der Maarel J.R. Doyle P.S. Effect of nanochannel geometry on DNA structure in the presence of macromolecular crowding agent. Nano Lett. 2011, 11(11):5047-5053. 10.1021/nl203114f
-
(2011)
Nano Lett.
, vol.11
, Issue.11
, pp. 5047-5053
-
-
Jones, J.J.1
van der Maarel, J.R.2
Doyle, P.S.3
-
134
-
-
48449095998
-
Nanofluidic biosensing for beta-amyloid detection using surface enhanced Raman spectroscopy
-
10.1021/nl0808132
-
Chou I.H. Benford M. Beier H.T. Cote G.L. Wang M. Jing N. Kameoka J. Good T.A. Nanofluidic biosensing for beta-amyloid detection using surface enhanced Raman spectroscopy. Nano Lett. 2008, 8(6):1729-1735. 10.1021/nl0808132
-
(2008)
Nano Lett.
, vol.8
, Issue.6
, pp. 1729-1735
-
-
Chou, I.H.1
Benford, M.2
Beier, H.T.3
Cote, G.L.4
Wang, M.5
Jing, N.6
Kameoka, J.7
Good, T.A.8
-
135
-
-
77949482471
-
Electrokinetic concentration of DNA polymers in nanofluidic channels
-
10.1021/nl902228p
-
Stein D. Deurvorst Z. van der Heyden F.H. Koopmans W.J. Gabel A. Dekker C. Electrokinetic concentration of DNA polymers in nanofluidic channels. Nano Lett. 2010, 10(3):765-772. 10.1021/nl902228p
-
(2010)
Nano Lett.
, vol.10
, Issue.3
, pp. 765-772
-
-
Stein, D.1
Deurvorst, Z.2
van der Heyden, F.H.3
Koopmans, W.J.4
Gabel, A.5
Dekker, C.6
-
136
-
-
23644452355
-
Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding
-
10.1039/b502809d
-
Mao P. Han J. Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding. Lab Chip 2005, 5(8):837-844. 10.1039/b502809d
-
(2005)
Lab Chip
, vol.5
, Issue.8
, pp. 837-844
-
-
Mao, P.1
Han, J.2
-
137
-
-
26844435728
-
Measurements of diffusion coefficients in 1-D micro- and nanochannels using shear-driven flows
-
10.1039/b505122c
-
Pappaert K. Biesemans J. Clicq D. Vankrunkelsven S. Desmet G. Measurements of diffusion coefficients in 1-D micro- and nanochannels using shear-driven flows. Lab Chip 2005, 5(10):1104-1110. 10.1039/b505122c
-
(2005)
Lab Chip
, vol.5
, Issue.10
, pp. 1104-1110
-
-
Pappaert, K.1
Biesemans, J.2
Clicq, D.3
Vankrunkelsven, S.4
Desmet, G.5
-
138
-
-
36248930900
-
Direct measurement of effective diffusion coefficients in nanochannels using steady-state dispersion effects
-
10.1063/1.2801625
-
Durand N.F. Y. Bertsch A. Todorova M. Renaud P. Direct measurement of effective diffusion coefficients in nanochannels using steady-state dispersion effects. Appl. Phys. Lett. 2007, 91(20):203106. 10.1063/1.2801625
-
(2007)
Appl. Phys. Lett.
, vol.91
, Issue.20
, pp. 203106
-
-
Durand, N.F.Y.1
Bertsch, A.2
Todorova, M.3
Renaud, P.4
-
139
-
-
62749200487
-
Label-free determination of protein-surface interaction kinetics by ionic conductance inside a nanochannel
-
10.1039/b811006a
-
Durand N.F. Renaud P. Label-free determination of protein-surface interaction kinetics by ionic conductance inside a nanochannel. Lab Chip 2009, 9(2):319-324. 10.1039/b811006a
-
(2009)
Lab Chip
, vol.9
, Issue.2
, pp. 319-324
-
-
Durand, N.F.1
Renaud, P.2
-
140
-
-
21644437442
-
Ionic transport phenomena in nanofluidics: Experimental and theoretical study of the exclusion-enrichment effect on a chip
-
10.1021/nl050265h
-
Plecis A. Schoch R.B. Renaud P. Ionic transport phenomena in nanofluidics: Experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett. 2005, 5(6):1147-1155. 10.1021/nl050265h
-
(2005)
Nano Lett.
, vol.5
, Issue.6
, pp. 1147-1155
-
-
Plecis, A.1
Schoch, R.B.2
Renaud, P.3
-
141
-
-
33645416781
-
PH-controlled diffusion of proteins with different pI values across a nanochannel on a chip
-
10.1021/nl052372h
-
Schoch R.B. Bertsch A. Renaud P. pH-controlled diffusion of proteins with different pI values across a nanochannel on a chip. Nano Lett. 2006, 6(3):543-547. 10.1021/nl052372h
-
(2006)
Nano Lett.
, vol.6
, Issue.3
, pp. 543-547
-
-
Schoch, R.B.1
Bertsch, A.2
Renaud, P.3
-
142
-
-
70349847431
-
Rectification, gating voltage, and interchannel communication of nanoslot arrays due to asymmetric entrance space charge polarization
-
10.1103/PhysRevLett.103.154502
-
Yossifon G. Chang Y.-C. Chang H.-C. Rectification, gating voltage, and interchannel communication of nanoslot arrays due to asymmetric entrance space charge polarization. Phys. Rev. Lett. 2009, 103(15):154502. 10.1103/PhysRevLett.103.154502
-
(2009)
Phys. Rev. Lett.
, vol.103
, Issue.15
, pp. 154502
-
-
Yossifon, G.1
Chang, Y.-C.2
Chang, H.-C.3
-
143
-
-
79960947586
-
DNA tracking within a nanochannel: Device fabrication and experiments
-
10.1039/c1lc20075e
-
Mokkapati V.R. Di Virgilio V. Shen C. Mollinger J. Bastemeijer J. Bossche A. DNA tracking within a nanochannel: Device fabrication and experiments. Lab Chip 2011, 11(16):2711-2719. 10.1039/c1lc20075e
-
(2011)
Lab Chip
, vol.11
, Issue.16
, pp. 2711-2719
-
-
Mokkapati, V.R.1
Di Virgilio, V.2
Shen, C.3
Mollinger, J.4
Bastemeijer, J.5
Bossche, A.6
-
144
-
-
79957816372
-
Analysis of single quantum-dot mobility inside 1D nanochannel devices
-
10.1088/0957-4484/22/27/275201
-
Hoang H.T. Segers-Nolten I.M. Tas N.R. van Honschoten J.W. Subramaniam V. Elwenspoek M.C. Analysis of single quantum-dot mobility inside 1D nanochannel devices. Nanotechnology 2011, 22(27):275201. 10.1088/0957-4484/22/27/275201
-
(2011)
Nanotechnology
, vol.22
, Issue.27
, pp. 275201
-
-
Hoang, H.T.1
Segers-Nolten, I.M.2
Tas, N.R.3
van Honschoten, J.W.4
Subramaniam, V.5
Elwenspoek, M.C.6
-
145
-
-
33847765890
-
Micromachined Fabry-Perot interferometer with embedded nanochannels for nanoscale fluid dynamics
-
10.1021/nl062447x
-
van Delft K.M. Eijkel J.C. Mijatovic D. Druzhinina T.S. Rathgen H. Tas N.R. van den Berg A. Mugele F. Micromachined Fabry-Perot interferometer with embedded nanochannels for nanoscale fluid dynamics. Nano Lett. 2007, 7(2):345-350. 10.1021/nl062447x
-
(2007)
Nano Lett.
, vol.7
, Issue.2
, pp. 345-350
-
-
van Delft, K.M.1
Eijkel, J.C.2
Mijatovic, D.3
Druzhinina, T.S.4
Rathgen, H.5
Tas, N.R.6
van den Berg, A.7
Mugele, F.8
-
146
-
-
34249728919
-
Spontaneous stretching of DNA in a two-dimensional nanoslit
-
10.1021/nl0701861
-
Krishnan M. Monch I. Schwille P. Spontaneous stretching of DNA in a two-dimensional nanoslit. Nano Lett. 2007, 7(5):1270-1275. 10.1021/nl0701861
-
(2007)
Nano Lett.
, vol.7
, Issue.5
, pp. 1270-1275
-
-
Krishnan, M.1
Monch, I.2
Schwille, P.3
-
147
-
-
34249719489
-
Double thermal oxidation scheme for the fabrication of SiO2 nanochannels
-
10.1088/0957-4484/18/24/245301
-
Persson F. Thamdrup L.H. Mikkelsen M.B. L. Jaarlgard S.E. Skafte-Pedersen P. Bruus H. Kristensen A. Double thermal oxidation scheme for the fabrication of SiO2 nanochannels. Nanotechnology 2007, 18(24):245301. 10.1088/0957-4484/18/24/245301
-
(2007)
Nanotechnology
, vol.18
, Issue.24
, pp. 245301
-
-
Persson, F.1
Thamdrup, L.H.2
Mikkelsen, M.B.L.3
Jaarlgard, S.E.4
Skafte-Pedersen, P.5
Bruus, H.6
Kristensen, A.7
-
148
-
-
70350635679
-
Analysis of a nanochanneled membrane structure through convective gas flow
-
10.1088/0960-1317/19/11/115018
-
Grattoni A. De Rosa E. Ferrati S. Wang Z. Gianesini A. Liu X. Hussain F. Goodall R. Ferrari M. Analysis of a nanochanneled membrane structure through convective gas flow. J. Micromech. Microeng. 2009, 19(11):115018. 10.1088/0960-1317/19/11/115018
-
(2009)
J. Micromech. Microeng.
, vol.19
, Issue.11
, pp. 115018
-
-
Grattoni, A.1
De Rosa, E.2
Ferrati, S.3
Wang, Z.4
Gianesini, A.5
Liu, X.6
Hussain, F.7
Goodall, R.8
Ferrari, M.9
-
149
-
-
36949018390
-
Design and fabrication of a nanofluidic channel by selective thermal oxidation and etching back of silicon dioxide made on a silicon substrate
-
10.1088/0960-1317/17/12/001
-
Wu C. Jin Z. Wang H. Ma H. Wang Y. Design and fabrication of a nanofluidic channel by selective thermal oxidation and etching back of silicon dioxide made on a silicon substrate. J. Micromech. Microeng. 2007, 17(12):2393-2397. 10.1088/0960-1317/17/12/001
-
(2007)
J. Micromech. Microeng.
, vol.17
, Issue.12
, pp. 2393-2397
-
-
Wu, C.1
Jin, Z.2
Wang, H.3
Ma, H.4
Wang, Y.5
-
150
-
-
78049256848
-
A robust nanofluidic membrane with tunable zero-order release for implantable dose specific drug delivery
-
10.1039/c0lc00013b
-
Fine D. Grattoni A. Hosali S. Ziemys A. De Rosa E. Gill J. Medema R. Hudson L. Kojic M. Milosevic M. Brousseau Iii L. Goodall R. Ferrari M. Liu X. A robust nanofluidic membrane with tunable zero-order release for implantable dose specific drug delivery. Lab Chip 2010, 10(22):3074-3083. 10.1039/c0lc00013b
-
(2010)
Lab Chip
, vol.10
, Issue.22
, pp. 3074-3083
-
-
Fine, D.1
Grattoni, A.2
Hosali, S.3
Ziemys, A.4
De Rosa, E.5
Gill, J.6
Medema, R.7
Hudson, L.8
Kojic, M.9
Milosevic, M.10
Brousseau Iii, L.11
Goodall, R.12
Ferrari, M.13
Liu, X.14
-
151
-
-
79960372207
-
A low-voltage electrokinetic nanochannel drug delivery system
-
10.1039/c1lc00001b
-
Fine D. Grattoni A. Zabre E. Hussein F. Ferrari M. Liu X. A low-voltage electrokinetic nanochannel drug delivery system. Lab Chip 2011, 11(15):2526-2534. 10.1039/c1lc00001b
-
(2011)
Lab Chip
, vol.11
, Issue.15
, pp. 2526-2534
-
-
Fine, D.1
Grattoni, A.2
Zabre, E.3
Hussein, F.4
Ferrari, M.5
Liu, X.6
-
152
-
-
7044265023
-
Nanoengineered device for drug delivery application
-
10.1088/0957-4484/15/10/015
-
Sinha P.M. Valco G. Sharma S. Liu X. Ferrari M. Nanoengineered device for drug delivery application. Nanotechnology 2004, 15(10):S585-S589. 10.1088/0957-4484/15/10/015
-
(2004)
Nanotechnology
, vol.15
, Issue.10
-
-
Sinha, P.M.1
Valco, G.2
Sharma, S.3
Liu, X.4
Ferrari, M.5
-
153
-
-
77949342465
-
Fabrication of sub-10 nm planar nanofluidic channels through native oxide etch and anodic wafer bonding
-
10.1109/TNANO.2009.2038377
-
Song C.R. Wang P.S. Fabrication of sub-10 nm planar nanofluidic channels through native oxide etch and anodic wafer bonding. IEEE Trans. Nanotechnol. 2010, 9(2):138-141. 10.1109/TNANO.2009.2038377
-
(2010)
IEEE Trans. Nanotechnol.
, vol.9
, Issue.2
, pp. 138-141
-
-
Song, C.R.1
Wang, P.S.2
-
154
-
-
1642321075
-
Collapse of microchannels during anodic bonding: Theory and experiments
-
10.1063/1.1644898
-
Shih W.P. Hui C.Y. Tien N.C. Collapse of microchannels during anodic bonding: Theory and experiments. J. Appl. Phys. 2004, 95(5):2800-2808. 10.1063/1.1644898
-
(2004)
J. Appl. Phys.
, vol.95
, Issue.5
, pp. 2800-2808
-
-
Shih, W.P.1
Hui, C.Y.2
Tien, N.C.3
-
156
-
-
0031370110
-
Low temperature bonding for microfabrication of chemical analysis devices
-
10.1016/S0925-4005(97)00294-3
-
Wang H.Y. Foote R.S. Jacobson S.C. Schneibel J.H. Ramsey J.M. Low temperature bonding for microfabrication of chemical analysis devices. Sens. Actuators B 1997, 45(3):199-207. 10.1016/S0925-4005(97)00294-3
-
(1997)
Sens. Actuators B
, vol.45
, Issue.3
, pp. 199-207
-
-
Wang, H.Y.1
Foote, R.S.2
Jacobson, S.C.3
Schneibel, J.H.4
Ramsey, J.M.5
-
157
-
-
34247612361
-
Weighing of biomolecules, single cells and single nanoparticles in fluid
-
10.1038/nature05741
-
Burg T.P. Godin M. Knudsen S.M. Shen W. Carlson G. Foster J.S. Babcock K. Manalis S.R. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 2007, 446(7139):1066-1069. 10.1038/nature05741
-
(2007)
Nature
, vol.446
, Issue.7139
, pp. 1066-1069
-
-
Burg, T.P.1
Godin, M.2
Knudsen, S.M.3
Shen, W.4
Carlson, G.5
Foster, J.S.6
Babcock, K.7
Manalis, S.R.8
-
158
-
-
77955337633
-
Toward attogram mass measurements in solution with suspended nanochannel resonators
-
10.1021/nl101107u
-
Lee J. Shen W. Payer K. Burg T.P. Manalis S.R. Toward attogram mass measurements in solution with suspended nanochannel resonators. Nano Lett. 2010, 10(7):2537-2542. 10.1021/nl101107u
-
(2010)
Nano Lett.
, vol.10
, Issue.7
, pp. 2537-2542
-
-
Lee, J.1
Shen, W.2
Payer, K.3
Burg, T.P.4
Manalis, S.R.5
-
159
-
-
0035868020
-
A simplified model for glass dissolution in water
-
10.1023/A:1017591100985
-
Devreux F. Barboux P. Filoche M. Sapoval B. A simplified model for glass dissolution in water. J. Mater. Sci. 2001, 36(6):1331-1341. 10.1023/A:1017591100985
-
(2001)
J. Mater. Sci.
, vol.36
, Issue.6
, pp. 1331-1341
-
-
Devreux, F.1
Barboux, P.2
Filoche, M.3
Sapoval, B.4
-
161
-
-
33947531758
-
Fabrication of self-sealed circular nano/microfluidic channels in glass substrates
-
10.1088/0957-4484/18/13/135304
-
Wong C.C. Agarwal A. Balasubramanian N. Kwong D.L. Fabrication of self-sealed circular nano/microfluidic channels in glass substrates. Nanotechnology 2007, 18(13):135304. 10.1088/0957-4484/18/13/135304
-
(2007)
Nanotechnology
, vol.18
, Issue.13
, pp. 135304
-
-
Wong, C.C.1
Agarwal, A.2
Balasubramanian, N.3
Kwong, D.L.4
-
162
-
-
34547579903
-
Conformal metal thin-film coatings in high-aspect-ratio trenches using a self-sputtered rf-driven plasma source
-
10.1116/1.2749527
-
Ji L. Kim J.K. Ji Q. Leung K.N. Chen Y. Gough R.A. Conformal metal thin-film coatings in high-aspect-ratio trenches using a self-sputtered rf-driven plasma source. J. Vac. Sci. Technol. B 2007, 25(4):1227-1230. 10.1116/1.2749527
-
(2007)
J. Vac. Sci. Technol. B
, vol.25
, Issue.4
, pp. 1227-1230
-
-
Ji, L.1
Kim, J.K.2
Ji, Q.3
Leung, K.N.4
Chen, Y.5
Gough, R.A.6
-
163
-
-
59649103650
-
Massively-parallel ultra-high-aspect-ratio nanochannels as mesoporous membranes
-
10.1039/b809370a
-
Mao P. Han J. Massively-parallel ultra-high-aspect-ratio nanochannels as mesoporous membranes. Lab Chip 2009, 9(4):586-591. 10.1039/b809370a
-
(2009)
Lab Chip
, vol.9
, Issue.4
, pp. 586-591
-
-
Mao, P.1
Han, J.2
-
164
-
-
0035906180
-
Fabrication of nanometer-scale features by controlled isotropic wet chemical etching
-
10.1002/1521-4095(200104)13:8<604::AID-ADMA604>3.0.CO;2-J
-
Love J.C. Paul K.E. Whitesides G.M. Fabrication of nanometer-scale features by controlled isotropic wet chemical etching. Adv. Mater. 2001, 13(8):604-607. 10.1002/1521-4095(200104)13:8<604::AID-ADMA604>3.0.CO;2-J
-
(2001)
Adv. Mater.
, vol.13
, Issue.8
, pp. 604-607
-
-
Love, J.C.1
Paul, K.E.2
Whitesides, G.M.3
-
165
-
-
34548679169
-
High aspect ratio silicon nanomoulds for UV embossing fabricated by directional thermal oxidation using an oxidation mask
-
10.1088/0957-4484/18/35/355307
-
Chen L.Q. Chan-Park M.B. Yan Y.H. Zhang Q. Li C.M. Zhang J. High aspect ratio silicon nanomoulds for UV embossing fabricated by directional thermal oxidation using an oxidation mask. Nanotechnology 2007, 18(35):355307. 10.1088/0957-4484/18/35/355307
-
(2007)
Nanotechnology
, vol.18
, Issue.35
, pp. 355307
-
-
Chen, L.Q.1
Chan-Park, M.B.2
Yan, Y.H.3
Zhang, Q.4
Li, C.M.5
Zhang, J.6
-
166
-
-
42549105557
-
The residual pattern of double thin-film over-etching for the fabrication of continuous patterns with dimensions varying from 50 nm to millimeters over a large area
-
10.1088/0957-4484/19/15/155301
-
Chen L.Q. Chan-Park M.B. Yang C. Zhang Q. The residual pattern of double thin-film over-etching for the fabrication of continuous patterns with dimensions varying from 50 nm to millimeters over a large area. Nanotechnology 2008, 19(15):155301. 10.1088/0957-4484/19/15/155301
-
(2008)
Nanotechnology
, vol.19
, Issue.15
, pp. 155301
-
-
Chen, L.Q.1
Chan-Park, M.B.2
Yang, C.3
Zhang, Q.4
-
167
-
-
84859329902
-
Wafer-scale fabrication of high-aspect ratio nanochannels based on edge-lithography technique
-
10.1063/1.3683164
-
Xie Q. Zhou Q. Xie F. Sang J. Wang W. Zhang H.A. Wu W. Li Z. Wafer-scale fabrication of high-aspect ratio nanochannels based on edge-lithography technique. Biomicrofluidics 2012, 6(1):016502. 10.1063/1.3683164
-
(2012)
Biomicrofluidics
, vol.6
, Issue.1
, pp. 016502
-
-
Xie, Q.1
Zhou, Q.2
Xie, F.3
Sang, J.4
Wang, W.5
Zhang, H.A.6
Wu, W.7
Li, Z.8
-
168
-
-
77957839074
-
Fabrication of high-compact nanowires using alternating photoresist ashing and spacer technology
-
10.1088/0960-1317/20/8/085029
-
Mao H.Y. Wu W.G. Zhang Y.L. Zhai G. Xu J. Fabrication of high-compact nanowires using alternating photoresist ashing and spacer technology. J. Micromech. Microeng. 2010, 20(8):085029. 10.1088/0960-1317/20/8/085029
-
(2010)
J. Micromech. Microeng.
, vol.20
, Issue.8
, pp. 085029
-
-
Mao, H.Y.1
Wu, W.G.2
Zhang, Y.L.3
Zhai, G.4
Xu, J.5
-
169
-
-
79955792675
-
Removal of endotoxin from deionized water using micromachined silicon nanopore membranes
-
10.1088/0960-1317/21/5/054029
-
Smith R.A. Goldman K. Fissell W.H. Fleischman A.J. Zorman C.A. Roy S. Removal of endotoxin from deionized water using micromachined silicon nanopore membranes. J. Micromech. Microeng. 2011, 21(5):054029. 10.1088/0960-1317/21/5/054029
-
(2011)
J. Micromech. Microeng.
, vol.21
, Issue.5
, pp. 054029
-
-
Smith, R.A.1
Goldman, K.2
Fissell, W.H.3
Fleischman, A.J.4
Zorman, C.A.5
Roy, S.6
-
170
-
-
0242351073
-
A nanochannel fabrication technique without nanolithography
-
10.1021/nl034399b
-
Lee C. Yang E.H. Myung N.V. George T. A nanochannel fabrication technique without nanolithography. Nano Lett. 2003, 3(10):1339-1340. 10.1021/nl034399b
-
(2003)
Nano Lett.
, vol.3
, Issue.10
, pp. 1339-1340
-
-
Lee, C.1
Yang, E.H.2
Myung, N.V.3
George, T.4
-
171
-
-
0242381554
-
2D-confined nanochannels fabricated by conventional micromachining
-
10.1021/nl025693r
-
Tas N.R. Berenschot J.W. Mela P. Jansen H.V. Elwenspoek M. van den Berg A. 2D-confined nanochannels fabricated by conventional micromachining. Nano Lett. 2002, 2(9):1031-1032. 10.1021/nl025693r
-
(2002)
Nano Lett.
, vol.2
, Issue.9
, pp. 1031-1032
-
-
Tas, N.R.1
Berenschot, J.W.2
Mela, P.3
Jansen, H.V.4
Elwenspoek, M.5
van den Berg, A.6
-
172
-
-
84867493779
-
Logic gates based on ion transistors
-
10.1038/ncomms1869
-
Tybrandt K. Forchheimer R. Berggren M. Logic gates based on ion transistors. Nat. Commun. 2012, 3:871. 10.1038/ncomms1869
-
(2012)
Nat. Commun.
, vol.3
, pp. 871
-
-
Tybrandt, K.1
Forchheimer, R.2
Berggren, M.3
-
173
-
-
84862854762
-
Ion diode logics for pH control
-
10.1039/c2lc40093f
-
Gabrielsson E.O. Tybrandt K. Berggren M. Ion diode logics for pH control. Lab Chip 2012, 12(14):2507-2513. 10.1039/c2lc40093f
-
(2012)
Lab Chip
, vol.12
, Issue.14
, pp. 2507-2513
-
-
Gabrielsson, E.O.1
Tybrandt, K.2
Berggren, M.3
-
174
-
-
80052789956
-
Optofluidic in situ maskless lithography of charge selective nanoporous hydrogel for DNA preconcentration
-
10.1063/1.3516037
-
Kim H. Kim J. Kim E.G. Heinz A.J. Kwon S. Chun H. Optofluidic in situ maskless lithography of charge selective nanoporous hydrogel for DNA preconcentration. Biomicrofluidics 2010, 4(4):043014. 10.1063/1.3516037
-
(2010)
Biomicrofluidics
, vol.4
, Issue.4
, pp. 043014
-
-
Kim, H.1
Kim, J.2
Kim, E.G.3
Heinz, A.J.4
Kwon, S.5
Chun, H.6
-
175
-
-
74849121729
-
Stabilization of ion concentration polarization using a heterogeneous nanoporous junction
-
10.1021/nl9023319
-
Kim P. Kim S.J. Han J. Suh K.Y. Stabilization of ion concentration polarization using a heterogeneous nanoporous junction. Nano Lett. 2010, 10(1):16-23. 10.1021/nl9023319
-
(2010)
Nano Lett.
, vol.10
, Issue.1
, pp. 16-23
-
-
Kim, P.1
Kim, S.J.2
Han, J.3
Suh, K.Y.4
-
176
-
-
84855265956
-
Microscale pH regulation by splitting water
-
10.1063/1.3657928
-
Cheng L.J. Chang H.C. Microscale pH regulation by splitting water. Biomicrofluidics 2011, 5(4):046502. 10.1063/1.3657928
-
(2011)
Biomicrofluidics
, vol.5
, Issue.4
, pp. 046502
-
-
Cheng, L.J.1
Chang, H.C.2
-
177
-
-
81955164189
-
Electrochemical activation and inhibition of neuromuscular systems through modulation of ion concentrations with ion-selective membranes
-
10.1038/nmat3146
-
Song Y.A. Melik R. Rabie A.N. Ibrahim A.M. S. Moses D. Tan A. Han J. Lin S.J. Electrochemical activation and inhibition of neuromuscular systems through modulation of ion concentrations with ion-selective membranes. Nature Mater. 2011, 10:980-986. 10.1038/nmat3146
-
(2011)
Nature Mater.
, vol.10
, pp. 980-986
-
-
Song, Y.A.1
Melik, R.2
Rabie, A.N.3
Ibrahim, A.M.S.4
Moses, D.5
Tan, A.6
Han, J.7
Lin, S.J.8
-
178
-
-
33747274301
-
Novel modification of Nafion®117 for a MEMS-based micro direct methanol fuel cell (μDMFC)
-
10.1088/0960-1317/16/9/S09
-
Liu X. Suo C. Zhang Y. Wang X. Sun C. Li L. Zhang L. Novel modification of Nafion®117 for a MEMS-based micro direct methanol fuel cell (μDMFC). J. Micromech. Microeng. 2006, 16(9):S226-S232. 10.1088/0960-1317/16/9/S09
-
(2006)
J. Micromech. Microeng.
, vol.16
, Issue.9
-
-
Liu, X.1
Suo, C.2
Zhang, Y.3
Wang, X.4
Sun, C.5
Li, L.6
Zhang, L.7
-
179
-
-
42949144144
-
Self-sealed vertical polymeric nanoporous-junctions for high-throughput nanofluidic applications
-
10.1021/ac800157q
-
Kim S.J. Han J. Self-sealed vertical polymeric nanoporous-junctions for high-throughput nanofluidic applications. Anal. Chem. 2008, 80(9):3507-3511. 10.1021/ac800157q
-
(2008)
Anal. Chem.
, vol.80
, Issue.9
, pp. 3507-3511
-
-
Kim, S.J.1
Han, J.2
-
180
-
-
41149176123
-
Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane
-
10.1039/b717900f
-
Lee J.H. Song Y.A. Han J. Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane. Lab Chip 2008, 8(4):596-601. 10.1039/b717900f
-
(2008)
Lab Chip
, vol.8
, Issue.4
, pp. 596-601
-
-
Lee, J.H.1
Song, Y.A.2
Han, J.3
-
181
-
-
84862833608
-
Continuous-flow biomolecule and cell concentrator by ion concentration polarization
-
10.1021/ac2012619
-
Kwak R. Kim S.J. Han J. Continuous-flow biomolecule and cell concentrator by ion concentration polarization. Anal. Chem. 2011, 83(19):7348-7355. 10.1021/ac2012619
-
(2011)
Anal. Chem.
, vol.83
, Issue.19
, pp. 7348-7355
-
-
Kwak, R.1
Kim, S.J.2
Han, J.3
-
182
-
-
77957601332
-
Concentration-enhanced rapid detection of human chorionic gonadotropin (hCG) on a Au surface using a nanofluidic preconcentrator
-
10.1007/s10404-010-0598-z
-
Lee J.H. Han J. Concentration-enhanced rapid detection of human chorionic gonadotropin (hCG) on a Au surface using a nanofluidic preconcentrator. Microfluid. Nanofluid. 2010, 9(4):973-979. 10.1007/s10404-010-0598-z
-
(2010)
Microfluid. Nanofluid.
, vol.9
, Issue.4
, pp. 973-979
-
-
Lee, J.H.1
Han, J.2
-
183
-
-
79952664169
-
Massively parallel concentration device for multiplexed immunoassays
-
10.1039/c0lc00349b
-
Ko S.H. Kim S.J. Cheow L.F. Li L.D. Kang K.H. Han J. Massively parallel concentration device for multiplexed immunoassays. Lab Chip 2011, 11(7):1351-1358. 10.1039/c0lc00349b
-
(2011)
Lab Chip
, vol.11
, Issue.7
, pp. 1351-1358
-
-
Ko, S.H.1
Kim, S.J.2
Cheow, L.F.3
Li, L.D.4
Kang, K.H.5
Han, J.6
-
184
-
-
79960368358
-
Non-linear and linear enhancement of enzymatic reaction kinetics using a biomolecule concentrator
-
10.1039/c0lc00588f
-
Sarkar A. Han J. Non-linear and linear enhancement of enzymatic reaction kinetics using a biomolecule concentrator. Lab Chip 2011, 11(15):2569-2576. 10.1039/c0lc00588f
-
(2011)
Lab Chip
, vol.11
, Issue.15
, pp. 2569-2576
-
-
Sarkar, A.1
Han, J.2
-
185
-
-
80052795523
-
Continuous signal enhancement for sensitive aptamer affinity probe electrophoresis assay using electrokinetic concentration
-
10.1021/ac201307d
-
Cheow L.F. Han J. Continuous signal enhancement for sensitive aptamer affinity probe electrophoresis assay using electrokinetic concentration. Anal. Chem. 2011, 83(18):7086-7093. 10.1021/ac201307d
-
(2011)
Anal. Chem.
, vol.83
, Issue.18
, pp. 7086-7093
-
-
Cheow, L.F.1
Han, J.2
-
186
-
-
79955949019
-
A polymeric high-throughput pressure-driven micromixer using a nanoporous membrane
-
10.1007/s10404-010-0685-1
-
Jännig O. Nguyen N.-T. A polymeric high-throughput pressure-driven micromixer using a nanoporous membrane. Microfluid. Nanofluid. 2010, 10(3):513-519. 10.1007/s10404-010-0685-1
-
(2010)
Microfluid. Nanofluid.
, vol.10
, Issue.3
, pp. 513-519
-
-
Jännig, O.1
Nguyen, N.-T.2
-
188
-
-
34250756468
-
SiO2-coated porous anodic alumina membranes for high flow rate electroosmotic pumping
-
10.1088/0957-4484/18/27/275705
-
Vajandar S.K. Xu D. Markov D.A. Wikswo J.P. Hofmeister W. Li D. SiO2-coated porous anodic alumina membranes for high flow rate electroosmotic pumping. Nanotechnology 2007, 18(27):275705. 10.1088/0957-4484/18/27/275705
-
(2007)
Nanotechnology
, vol.18
, Issue.27
, pp. 275705
-
-
Vajandar, S.K.1
Xu, D.2
Markov, D.A.3
Wikswo, J.P.4
Hofmeister, W.5
Li, D.6
-
189
-
-
63649138398
-
A pH-tunable nanofluidic diode with a broad range of rectifying properties
-
10.1021/nn900039f
-
Ali M. Ramirez P. Mafe S. Neumann R. Ensinger W. A pH-tunable nanofluidic diode with a broad range of rectifying properties. ACS Nano 2009, 3(3):603-608. 10.1021/nn900039f
-
(2009)
ACS Nano
, vol.3
, Issue.3
, pp. 603-608
-
-
Ali, M.1
Ramirez, P.2
Mafe, S.3
Neumann, R.4
Ensinger, W.5
-
190
-
-
66949151444
-
Size-selective diffusion in nanoporous but flexible membranes for glucose sensors
-
10.1021/nn8008728
-
Uehara H. Kakiage M. Sekiya M. Sakuma D. Yamonobe T. Takano N. Barraud A. Meurville E. Ryser P. Size-selective diffusion in nanoporous but flexible membranes for glucose sensors. ACS Nano 2009, 3(4):924-932. 10.1021/nn8008728
-
(2009)
ACS Nano
, vol.3
, Issue.4
, pp. 924-932
-
-
Uehara, H.1
Kakiage, M.2
Sekiya, M.3
Sakuma, D.4
Yamonobe, T.5
Takano, N.6
Barraud, A.7
Meurville, E.8
Ryser, P.9
-
191
-
-
0542446392
-
On the growth of highly ordered pores in anodized aluminum Oxide
-
10.1021/cm980163a
-
Li F. Zhang L. Metzger R.M. On the growth of highly ordered pores in anodized aluminum Oxide. Chem. Mater. 1998, 10(9):2470-2480. 10.1021/cm980163a
-
(1998)
Chem. Mater.
, vol.10
, Issue.9
, pp. 2470-2480
-
-
Li, F.1
Zhang, L.2
Metzger, R.M.3
-
192
-
-
70350686765
-
A label-free porous alumina interferometric immunosensor
-
10.1021/nn900825q
-
Alvarez S.D. Li C.P. Chiang C.E. Schuller I.K. Sailor M.J. A label-free porous alumina interferometric immunosensor. ACS Nano 2009, 3(10):3301-3307. 10.1021/nn900825q
-
(2009)
ACS Nano
, vol.3
, Issue.10
, pp. 3301-3307
-
-
Alvarez, S.D.1
Li, C.P.2
Chiang, C.E.3
Schuller, I.K.4
Sailor, M.J.5
-
193
-
-
66949136752
-
Label-free DNA sensor based on surface charge modulated ionic conductance
-
10.1021/nn900113x
-
Wang X. Smirnov S. Label-free DNA sensor based on surface charge modulated ionic conductance. ACS Nano 2009, 3(4):1004-1010. 10.1021/nn900113x
-
(2009)
ACS Nano
, vol.3
, Issue.4
, pp. 1004-1010
-
-
Wang, X.1
Smirnov, S.2
-
194
-
-
78649611228
-
A nanochannel array-based electrochemical device for quantitative label-free DNA analysis
-
10.1021/nn101050r
-
Li S.J. Li J. Wang K. Wang C. Xu J.J. Chen H.Y. Xia X.H. Huo Q. A nanochannel array-based electrochemical device for quantitative label-free DNA analysis. ACS Nano 2010, 4(11):6417-6424. 10.1021/nn101050r
-
(2010)
ACS Nano
, vol.4
, Issue.11
, pp. 6417-6424
-
-
Li, S.J.1
Li, J.2
Wang, K.3
Wang, C.4
Xu, J.J.5
Chen, H.Y.6
Xia, X.H.7
Huo, Q.8
-
195
-
-
79952119256
-
A polyethylene oxide-functionalized self-organized alumina nanochannel array for an immunoprotection biofilter
-
10.1039/c0lc00499e
-
Lee S. Park M. Park H.S. Kim Y. Cho S. Cho J.H. Park J. Hwang W. A polyethylene oxide-functionalized self-organized alumina nanochannel array for an immunoprotection biofilter. Lab Chip 2011, 11(6):1049-1053. 10.1039/c0lc00499e
-
(2011)
Lab Chip
, vol.11
, Issue.6
, pp. 1049-1053
-
-
Lee, S.1
Park, M.2
Park, H.S.3
Kim, Y.4
Cho, S.5
Cho, J.H.6
Park, J.7
Hwang, W.8
-
196
-
-
37149048114
-
Micropumps based on the enhanced electroosmotic effect of aluminum oxide membranes
-
10.1002/adma.200700767
-
Miao J.Y. Xu Z.L. Zhang X.Y. Wang N. Yang Z.Y. Sheng P. Micropumps based on the enhanced electroosmotic effect of aluminum oxide membranes. Adv. Mater. 2007, 19(23):4234-4237. 10.1002/adma.200700767
-
(2007)
Adv. Mater.
, vol.19
, Issue.23
, pp. 4234-4237
-
-
Miao, J.Y.1
Xu, Z.L.2
Zhang, X.Y.3
Wang, N.4
Yang, Z.Y.5
Sheng, P.6
-
197
-
-
46949085485
-
Low-voltage electroosmotic pumping using porous anodic alumina membranes
-
10.1007/s10404-007-0242-8
-
Chen Y.-F. Li M.-C. Hu Y.-H. Chang W.-J. Wang C.-C. Low-voltage electroosmotic pumping using porous anodic alumina membranes. Microfluid. Nanofluid. 2007, 5(2):235-244. 10.1007/s10404-007-0242-8
-
(2007)
Microfluid. Nanofluid.
, vol.5
, Issue.2
, pp. 235-244
-
-
Chen, Y.-F.1
Li, M.-C.2
Hu, Y.-H.3
Chang, W.-J.4
Wang, C.-C.5
-
198
-
-
48249123193
-
High speed fabrication of aluminum nanostructures with 10 nm spatial resolution by electrochemical replication
-
10.1088/0957-4484/19/35/355302
-
Biring S. Tsai K.T. Sur U.K. Wang Y.L. High speed fabrication of aluminum nanostructures with 10 nm spatial resolution by electrochemical replication. Nanotechnology 2008, 19(35):355302. 10.1088/0957-4484/19/35/355302
-
(2008)
Nanotechnology
, vol.19
, Issue.35
, pp. 355302
-
-
Biring, S.1
Tsai, K.T.2
Sur, U.K.3
Wang, Y.L.4
-
199
-
-
84862874772
-
A facile route for the fabrication of large-scale gate-all-around nanofluidic field-effect transistors with low leakage current
-
10.1039/c2lc40112f
-
Shin S. Kim B.S. Song J. Lee H. Cho H.H. A facile route for the fabrication of large-scale gate-all-around nanofluidic field-effect transistors with low leakage current. Lab Chip 2012, 12(14):2568-2574. 10.1039/c2lc40112f
-
(2012)
Lab Chip
, vol.12
, Issue.14
, pp. 2568-2574
-
-
Shin, S.1
Kim, B.S.2
Song, J.3
Lee, H.4
Cho, H.H.5
-
200
-
-
0003068498
-
Periodic holes with 10 nm diameter produced by grazing Ar+ milling of the barrier laver in hexagonally ordered nanoporous alumina
-
10.1021/nl010075g
-
Xu T. Zangari G. Metzger R.M. Periodic holes with 10 nm diameter produced by grazing Ar+ milling of the barrier laver in hexagonally ordered nanoporous alumina. Nano Lett. 2002, 2(1):37-41. 10.1021/nl010075g
-
(2002)
Nano Lett.
, vol.2
, Issue.1
, pp. 37-41
-
-
Xu, T.1
Zangari, G.2
Metzger, R.M.3
-
201
-
-
84866508696
-
A novel self-ordered sub-10 nm nanopore template for nanotechnology
-
10.1002/adma.201200648
-
Moyen E. Santinacci L. Masson L. Wulfhekel W. Hanbucken M. A novel self-ordered sub-10 nm nanopore template for nanotechnology. Adv. Mater. 2012, 24(7):5094-5098. 10.1002/adma.201200648
-
(2012)
Adv. Mater.
, vol.24
, Issue.7
, pp. 5094-5098
-
-
Moyen, E.1
Santinacci, L.2
Masson, L.3
Wulfhekel, W.4
Hanbucken, M.5
-
202
-
-
0035272696
-
Fabrication of ideally ordered anodic porous alumina with 63 nm hole periodicity using sulfuric acid
-
10.1116/1.1347039
-
Asoh H. Nishio K. Nakao M. Yokoo A. Tamamura T. Masuda H. Fabrication of ideally ordered anodic porous alumina with 63 nm hole periodicity using sulfuric acid. J. Vac. Sci. Technol. B 2001, 19(2):569-572. 10.1116/1.1347039
-
(2001)
J. Vac. Sci. Technol. B
, vol.19
, Issue.2
, pp. 569-572
-
-
Asoh, H.1
Nishio, K.2
Nakao, M.3
Yokoo, A.4
Tamamura, T.5
Masuda, H.6
-
203
-
-
0012533452
-
Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces
-
10.1063/1.1335543
-
Liu C.Y. Datta A. Wang Y.L. Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces. Appl. Phys. Lett. 2001, 78(1):120-122. 10.1063/1.1335543
-
(2001)
Appl. Phys. Lett.
, vol.78
, Issue.1
, pp. 120-122
-
-
Liu, C.Y.1
Datta, A.2
Wang, Y.L.3
-
204
-
-
31144467808
-
Ideally ordered 10 nm channel arrays grown by anodization of focused-ion-beam patterned aluminum
-
10.1116/1.1884123
-
Peng C.Y. Liu C.Y. Liu N.W. Wang H.H. Datta A. Wang Y.L. Ideally ordered 10 nm channel arrays grown by anodization of focused-ion-beam patterned aluminum. J. Vac. Sci. Technol. B 2005, 23(2):559-562. 10.1116/1.1884123
-
(2005)
J. Vac. Sci. Technol. B
, vol.23
, Issue.2
, pp. 559-562
-
-
Peng, C.Y.1
Liu, C.Y.2
Liu, N.W.3
Wang, H.H.4
Datta, A.5
Wang, Y.L.6
-
205
-
-
0037463241
-
High-speed focused-ion-beam patterning for guiding the growth of anodic alumina nanochannel arrays
-
10.1063/1.1555689
-
Liu N.W. Datta A. Liu C.Y. Wang Y.L. High-speed focused-ion-beam patterning for guiding the growth of anodic alumina nanochannel arrays. Appl. Phys. Lett. 2003, 82(8):1281-1283. 10.1063/1.1555689
-
(2003)
Appl. Phys. Lett.
, vol.82
, Issue.8
, pp. 1281-1283
-
-
Liu, N.W.1
Datta, A.2
Liu, C.Y.3
Wang, Y.L.4
-
206
-
-
13844297509
-
Fabrication of anodic-alumina films with custom-designed arrays of nanochannels
-
10.1002/adma.200400380
-
Liu N.W. Datta A. Liu C.Y. Peng C.Y. Wang H.H. Wang Y.L. Fabrication of anodic-alumina films with custom-designed arrays of nanochannels. Adv. Mater. 2005, 17(2):222-225. 10.1002/adma.200400380
-
(2005)
Adv. Mater.
, vol.17
, Issue.2
, pp. 222-225
-
-
Liu, N.W.1
Datta, A.2
Liu, C.Y.3
Peng, C.Y.4
Wang, H.H.5
Wang, Y.L.6
-
207
-
-
54949155526
-
Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements
-
10.1002/adma.200702604
-
Liu N.W. Liu C.Y. Wang H.H. Hsu C.F. Lai M.Y. Chuang T.H. Wang Y.L. Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements. Adv. Mater. 2008, 20(13):2547-2551. 10.1002/adma.200702604
-
(2008)
Adv. Mater.
, vol.20
, Issue.13
, pp. 2547-2551
-
-
Liu, N.W.1
Liu, C.Y.2
Wang, H.H.3
Hsu, C.F.4
Lai, M.Y.5
Chuang, T.H.6
Wang, Y.L.7
-
208
-
-
0034742386
-
Track etching technique in membrane technology
-
10.1016/S1350-4487(01)00228-1
-
Apel P.Y. Track etching technique in membrane technology. Radiat. Meas. 2001, 34:559-566. 10.1016/S1350-4487(01)00228-1
-
(2001)
Radiat. Meas.
, vol.34
, pp. 559-566
-
-
Apel, P.Y.1
-
209
-
-
84877654028
-
-
Ph.D. dissertation, der Technischen Universitat Darmstadt.
-
Ali M. 2009, Ph.D. dissertation, der Technischen Universitat Darmstadt.
-
(2009)
-
-
Ali, M.1
-
210
-
-
80755146142
-
Bio-inspired smart gating nanochannels based on polymer films
-
10.1007/s11426-011-4324-9
-
Wen L. Jiang L. Bio-inspired smart gating nanochannels based on polymer films. Sci. China Chem. 2011, 54(10):1537-1546. 10.1007/s11426-011-4324-9
-
(2011)
Sci. China Chem.
, vol.54
, Issue.10
, pp. 1537-1546
-
-
Wen, L.1
Jiang, L.2
-
211
-
-
84877682067
-
Micro- and nanoporous materials produced using accelerated heavy ion beams
-
10.1088/2043-6262/2/1/013002
-
Apel P.Y. Dmitriev S.N. Micro- and nanoporous materials produced using accelerated heavy ion beams. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2011, 2(1):013002. 10.1088/2043-6262/2/1/013002
-
(2011)
Adv. Nat. Sci.: Nanosci. Nanotechnol.
, vol.2
, Issue.1
, pp. 013002
-
-
Apel, P.Y.1
Dmitriev, S.N.2
-
213
-
-
34547162996
-
Fabrication of nanopores in polymer foils with surfactant-controlled longitudinal profiles
-
10.1088/0957-4484/18/30/305302
-
Apel P.Y. Blonskaya I.V. Dmitriev S.N. Orelovitch O.L. Presz A. Sartowska B.A. Fabrication of nanopores in polymer foils with surfactant-controlled longitudinal profiles. Nanotechnology 2007, 18(30):305302. 10.1088/0957-4484/18/30/305302
-
(2007)
Nanotechnology
, vol.18
, Issue.30
, pp. 305302
-
-
Apel, P.Y.1
Blonskaya, I.V.2
Dmitriev, S.N.3
Orelovitch, O.L.4
Presz, A.5
Sartowska, B.A.6
-
214
-
-
84861047535
-
Asymmetric ion track nanopores for sensor technology. Reconstruction of pore profile from conductometric measurements
-
10.1088/0957-4484/23/22/225503
-
Apel P.Y. Blonskaya I.V. Orelovitch O.L. Sartowska B.A. Spohr R. Asymmetric ion track nanopores for sensor technology. Reconstruction of pore profile from conductometric measurements. Nanotechnology 2012, 23(22):225503. 10.1088/0957-4484/23/22/225503
-
(2012)
Nanotechnology
, vol.23
, Issue.22
, pp. 225503
-
-
Apel, P.Y.1
Blonskaya, I.V.2
Orelovitch, O.L.3
Sartowska, B.A.4
Spohr, R.5
-
215
-
-
0001511746
-
Size-based protein separations in poly(ethylene glycol)-derivatized gold nanotubule membranes
-
10.1021/nl010044l
-
Yu S.F. Lee S.B. Kang M. Martin C.R. Size-based protein separations in poly(ethylene glycol)-derivatized gold nanotubule membranes. Nano Lett. 2001, 1(9):495-498. 10.1021/nl010044l
-
(2001)
Nano Lett.
, vol.1
, Issue.9
, pp. 495-498
-
-
Yu, S.F.1
Lee, S.B.2
Kang, M.3
Martin, C.R.4
-
216
-
-
70249118549
-
Three-dimensional integrated microfluidic architectures enabled through electrically switchable nanocapillary array membranes
-
10.1063/1.2732208
-
Gatimu E.N. King T.L. Sweedler J.V. Bohn P.W. Three-dimensional integrated microfluidic architectures enabled through electrically switchable nanocapillary array membranes. Biomicrofluidics 2007, 1(2):021502. 10.1063/1.2732208
-
(2007)
Biomicrofluidics
, vol.1
, Issue.2
, pp. 021502
-
-
Gatimu, E.N.1
King, T.L.2
Sweedler, J.V.3
Bohn, P.W.4
-
217
-
-
52649169925
-
Ionic current rectification at a nanofluidic/microfluidic interface with an asymmetric microfluidic system
-
10.1039/b808179d
-
Miller S.A. Kelly K.C. Timperman A.T. Ionic current rectification at a nanofluidic/microfluidic interface with an asymmetric microfluidic system. Lab Chip 2008, 8(10):1729-1732. 10.1039/b808179d
-
(2008)
Lab Chip
, vol.8
, Issue.10
, pp. 1729-1732
-
-
Miller, S.A.1
Kelly, K.C.2
Timperman, A.T.3
-
218
-
-
77549087711
-
Controlled fabrication of ion track nanowires and channels
-
10.1016/j.nimb.2009.12.017
-
Spohr R. Zet C. Eberhard Fischer B. Kiesewetter H. Apel P. Gunko I. Ohgai T. Westerberg L. Controlled fabrication of ion track nanowires and channels. Nucl. Instrum. Methods Phys. Res. B 2010, 268(6):676-686. 10.1016/j.nimb.2009.12.017
-
(2010)
Nucl. Instrum. Methods Phys. Res. B
, vol.268
, Issue.6
, pp. 676-686
-
-
Spohr, R.1
Zet, C.2
Eberhard Fischer, B.3
Kiesewetter, H.4
Apel, P.5
Gunko, I.6
Ohgai, T.7
Westerberg, L.8
-
219
-
-
84855918919
-
Measurements of the ion-depletion zone evolution in a micro/nano-channel
-
10.1007/s10404-011-0828-z
-
Yu Q. Silber-Li Z. Measurements of the ion-depletion zone evolution in a micro/nano-channel. Microfluid. Nanofluid. 2011, 11(5):623-631. 10.1007/s10404-011-0828-z
-
(2011)
Microfluid. Nanofluid.
, vol.11
, Issue.5
, pp. 623-631
-
-
Yu, Q.1
Silber-Li, Z.2
-
220
-
-
34047190449
-
Nanofluidic diode
-
10.1021/nl062924b
-
Vlassiouk I. Siwy Z.S. Nanofluidic diode. Nano Lett. 2007, 7(3):552-556. 10.1021/nl062924b
-
(2007)
Nano Lett.
, vol.7
, Issue.3
, pp. 552-556
-
-
Vlassiouk, I.1
Siwy, Z.S.2
-
221
-
-
67650293614
-
Surface charge density of the track-etched nanopores in polyethylene terephthalate foils
-
10.1063/1.3130988
-
Xue J. Xie Y. Yan Y. Ke J. Wang Y. Surface charge density of the track-etched nanopores in polyethylene terephthalate foils. Biomicrofluidics 2009, 3(2):022408. 10.1063/1.3130988
-
(2009)
Biomicrofluidics
, vol.3
, Issue.2
, pp. 022408
-
-
Xue, J.1
Xie, Y.2
Yan, Y.3
Ke, J.4
Wang, Y.5
-
222
-
-
66449083774
-
Squeezing ionic liquids through nanopores
-
10.1021/nl900630z
-
Davenport M. Rodriguez A. Shea K.J. Siwy Z.S. Squeezing ionic liquids through nanopores. Nano Lett. 2009, 9(5):2125-2128. 10.1021/nl900630z
-
(2009)
Nano Lett.
, vol.9
, Issue.5
, pp. 2125-2128
-
-
Davenport, M.1
Rodriguez, A.2
Shea, K.J.3
Siwy, Z.S.4
-
223
-
-
67650513288
-
Biosensing with nanofluidic diodes
-
10.1021/ja901120f
-
Vlassiouk I. Kozel T.R. Siwy Z.S. Biosensing with nanofluidic diodes. J. Am. Chem. Soc. 2009, 131(23):8211-8220. 10.1021/ja901120f
-
(2009)
J. Am. Chem. Soc.
, vol.131
, Issue.23
, pp. 8211-8220
-
-
Vlassiouk, I.1
Kozel, T.R.2
Siwy, Z.S.3
-
224
-
-
84856334864
-
Selective discrimination of small hydrophobic biomolecules based on ion-current rectification in conically shaped nanochannel
-
10.1016/j.talanta.2011.12.022
-
Guo Z. Wang J. Wang E. Selective discrimination of small hydrophobic biomolecules based on ion-current rectification in conically shaped nanochannel. Talanta 2012, 89:253-257. 10.1016/j.talanta.2011.12.022
-
(2012)
Talanta
, vol.89
, pp. 253-257
-
-
Guo, Z.1
Wang, J.2
Wang, E.3
-
225
-
-
1642528419
-
An asymmetric polymer nanopore for single molecule detection
-
10.1021/nl035141o
-
Mara A. Siwy Z.S. Trautmann C. Wan J. Kamme F. An asymmetric polymer nanopore for single molecule detection. Nano Lett. 2004, 4(3):497-501. 10.1021/nl035141o
-
(2004)
Nano Lett.
, vol.4
, Issue.3
, pp. 497-501
-
-
Mara, A.1
Siwy, Z.S.2
Trautmann, C.3
Wan, J.4
Kamme, F.5
-
226
-
-
77957827528
-
Charge-selective transport of organic and protein analytes through synthetic nanochannels
-
10.1088/0957-4484/21/36/365701
-
Nguyen Q.H. Ali M. Bayer V. Neumann R. Ensinger W. Charge-selective transport of organic and protein analytes through synthetic nanochannels. Nanotechnology 2010, 21(36):365701. 10.1088/0957-4484/21/36/365701
-
(2010)
Nanotechnology
, vol.21
, Issue.36
, pp. 365701
-
-
Nguyen, Q.H.1
Ali, M.2
Bayer, V.3
Neumann, R.4
Ensinger, W.5
-
227
-
-
67650678151
-
A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore
-
10.1021/ja901574c
-
Hou X. Guo W. Xia F. Nie F.Q. Dong H. Tian Y. Wen L. Wang L. Cao L. Yang Y. Xue J. Song Y. Wang Y. Liu D. Jiang L. A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore. J. Am. Chem. Soc. 2009, 131(22):7800-7805. 10.1021/ja901574c
-
(2009)
J. Am. Chem. Soc.
, vol.131
, Issue.22
, pp. 7800-7805
-
-
Hou, X.1
Guo, W.2
Xia, F.3
Nie, F.Q.4
Dong, H.5
Tian, Y.6
Wen, L.7
Wang, L.8
Cao, L.9
Yang, Y.10
Xue, J.11
Song, Y.12
Wang, Y.13
Liu, D.14
Jiang, L.15
-
228
-
-
25844461753
-
Detecting single porphyrin molecules in a conically shaped synthetic nanopore
-
10.1021/nl050925i
-
Heins E.A. Siwy Z.S. Baker L.A. Martin C.R. Detecting single porphyrin molecules in a conically shaped synthetic nanopore. Nano Lett. 2005, 5(9):1824-1829. 10.1021/nl050925i
-
(2005)
Nano Lett.
, vol.5
, Issue.9
, pp. 1824-1829
-
-
Heins, E.A.1
Siwy, Z.S.2
Baker, L.A.3
Martin, C.R.4
-
229
-
-
42949126743
-
A new drug-sensing paradigm based on ion-current rectification in a conically shaped nanopore
-
10.2217/17435889.3.1.13
-
Wang J. Martin C.R. A new drug-sensing paradigm based on ion-current rectification in a conically shaped nanopore. Nanomedicine 2008, 3(1):13-20. 10.2217/17435889.3.1.13
-
(2008)
Nanomedicine
, vol.3
, Issue.1
, pp. 13-20
-
-
Wang, J.1
Martin, C.R.2
-
230
-
-
78149455125
-
Integrating ionic gate and rectifier within one solid-state nanopore via modification with dual-responsive copolymer brushes
-
10.1002/adfm.201000989
-
Guo W. Xia H. Cao L. Xia F. Wang S. Zhang G. Song Y. Wang Y. Jiang L. Zhu D. Integrating ionic gate and rectifier within one solid-state nanopore via modification with dual-responsive copolymer brushes. Adv. Funct. Mater. 2010, 20(20):3561-3567. 10.1002/adfm.201000989
-
(2010)
Adv. Funct. Mater.
, vol.20
, Issue.20
, pp. 3561-3567
-
-
Guo, W.1
Xia, H.2
Cao, L.3
Xia, F.4
Wang, S.5
Zhang, G.6
Song, Y.7
Wang, Y.8
Jiang, L.9
Zhu, D.10
-
231
-
-
77955528259
-
Nanoporous membranes derived from block copolymers: From drug delivery to water filtration
-
10.1021/nn1014006
-
Jackson E.A. Hillmyer M.A. Nanoporous membranes derived from block copolymers: From drug delivery to water filtration. ACS Nano 2010, 4(7):3548-3553. 10.1021/nn1014006
-
(2010)
ACS Nano
, vol.4
, Issue.7
, pp. 3548-3553
-
-
Jackson, E.A.1
Hillmyer, M.A.2
-
232
-
-
79952587704
-
DNA-functionalized nanochannels for SNP detection
-
10.1021/nl200357y
-
Yang S.Y. Son S. Jang S. Kim H. Jeon G. Kim W.J. Kim J.K. DNA-functionalized nanochannels for SNP detection. Nano Lett. 2011, 11(3):1032-1035. 10.1021/nl200357y
-
(2011)
Nano Lett.
, vol.11
, Issue.3
, pp. 1032-1035
-
-
Yang, S.Y.1
Son, S.2
Jang, S.3
Kim, H.4
Jeon, G.5
Kim, W.J.6
Kim, J.K.7
-
233
-
-
36749038472
-
Electrochemically replicated smooth aluminum foils for anodic alumina nanochannel arrays
-
10.1088/0957-4484/19/01/015304
-
Biring S. Tsai K.T. Sur U.K. Wang Y.L. Electrochemically replicated smooth aluminum foils for anodic alumina nanochannel arrays. Nanotechnology 2008, 19(1):015304. 10.1088/0957-4484/19/01/015304
-
(2008)
Nanotechnology
, vol.19
, Issue.1
, pp. 015304
-
-
Biring, S.1
Tsai, K.T.2
Sur, U.K.3
Wang, Y.L.4
-
234
-
-
58149252183
-
In situ preparation of an ultra-thin nanomask on a silicon wafer
-
10.1088/0957-4484/20/2/025301
-
Mao R.W. Lin S.K. Tsai C.S. In situ preparation of an ultra-thin nanomask on a silicon wafer. Nanotechnology 2009, 20(2):025301. 10.1088/0957-4484/20/2/025301
-
(2009)
Nanotechnology
, vol.20
, Issue.2
, pp. 025301
-
-
Mao, R.W.1
Lin, S.K.2
Tsai, C.S.3
-
235
-
-
51349124827
-
Micro-patternable nanoporous polymer integrated with microstructures for molecular filtration
-
10.1088/0957-4484/19/36/365301
-
Chang C.J. Yang C.S. Chuang Y.J. Khoo H.S. Tseng F.G. Micro-patternable nanoporous polymer integrated with microstructures for molecular filtration. Nanotechnology 2008, 19(36):365301. 10.1088/0957-4484/19/36/365301
-
(2008)
Nanotechnology
, vol.19
, Issue.36
, pp. 365301
-
-
Chang, C.J.1
Yang, C.S.2
Chuang, Y.J.3
Khoo, H.S.4
Tseng, F.G.5
-
236
-
-
19444367161
-
Opaline photonic crystals: How does self-assembly work?
-
10.1002/adma.200400455
-
Norris D.J. Arlinghaus E.G. Meng L. Heiny R. Scriven L.E. Opaline photonic crystals: How does self-assembly work?. Adv. Mater. 2004, 16(16):1393-1399. 10.1002/adma.200400455
-
(2004)
Adv. Mater.
, vol.16
, Issue.16
, pp. 1393-1399
-
-
Norris, D.J.1
Arlinghaus, E.G.2
Meng, L.3
Heiny, R.4
Scriven, L.E.5
-
237
-
-
1842405373
-
Photonic crystals: Putting a new twist on light
-
10.1038/386143a0
-
Joannopoulos J.D. Villeneuve P.R. Fan S. Photonic crystals: Putting a new twist on light. Nature 1997, 386(6621):143-149. 10.1038/386143a0
-
(1997)
Nature
, vol.386
, Issue.6621
, pp. 143-149
-
-
Joannopoulos, J.D.1
Villeneuve, P.R.2
Fan, S.3
-
238
-
-
0031259910
-
Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials
-
10.1038/39834
-
Holtz J.H. Asher S.A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 1997, 389(6653):829-832. 10.1038/39834
-
(1997)
Nature
, vol.389
, Issue.6653
, pp. 829-832
-
-
Holtz, J.H.1
Asher, S.A.2
-
239
-
-
0033902546
-
Structured porous materials via colloidal crystal templating: From inorganic oxides to metals
-
10.1002/(SICI)1521-4095(200004)12:7<531::AID-ADMA531>3.0.CO;2-S
-
Velev O.D. Kaler E.W. Structured porous materials via colloidal crystal templating: From inorganic oxides to metals. Adv. Mater. 2000, 12(7):531-534. 10.1002/(SICI)1521-4095(200004)12:7<531::AID-ADMA531>3.0.CO;2-S
-
(2000)
Adv. Mater.
, vol.12
, Issue.7
, pp. 531-534
-
-
Velev, O.D.1
Kaler, E.W.2
-
240
-
-
33947392596
-
Self assemble colloidal arrays as three dimensional nanofluidic sieves for separation of biomolecules on microchips
-
10.1021/ac061931h
-
Zeng Y. Harrison D.J. Self assemble colloidal arrays as three dimensional nanofluidic sieves for separation of biomolecules on microchips. Anal. Chem. 2007, 79(6):2289-2295. 10.1021/ac061931h
-
(2007)
Anal. Chem.
, vol.79
, Issue.6
, pp. 2289-2295
-
-
Zeng, Y.1
Harrison, D.J.2
-
241
-
-
34547542166
-
Monolithic integration of well-ordered nanoporous structures in the microfluidic channels for bioseparation
-
10.1016/j.chroma.2007.06.037
-
Kuo C.-W. Shiu J.-Y. Wei K.H. Chen P. Monolithic integration of well-ordered nanoporous structures in the microfluidic channels for bioseparation. J. Chromatogr. A 2007, 1162(2):175-179. 10.1016/j.chroma.2007.06.037
-
(2007)
J. Chromatogr. A
, vol.1162
, Issue.2
, pp. 175-179
-
-
Kuo, C.-W.1
Shiu, J.-Y.2
Wei, K.H.3
Chen, P.4
-
242
-
-
52049124313
-
Microfluidic self-patterning of large-scale crystalline nanoarrays for high-throughput continuous DNA fractionation
-
10.1002/anie.200800816
-
Zeng Y. He M. Harrison D.J. Microfluidic self-patterning of large-scale crystalline nanoarrays for high-throughput continuous DNA fractionation. Angew. Chem., Int. Ed. 2008, 47(34):6388-6391. 10.1002/anie.200800816
-
(2008)
Angew. Chem., Int. Ed.
, vol.47
, Issue.34
, pp. 6388-6391
-
-
Zeng, Y.1
He, M.2
Harrison, D.J.3
-
243
-
-
84859331574
-
A nanoporous optofluidic microsystem for highly sensitive and repeatable surface enhanced Raman spectroscopy detection
-
10.1063/1.3677369
-
Yazdi S.H. White I.M. A nanoporous optofluidic microsystem for highly sensitive and repeatable surface enhanced Raman spectroscopy detection. Biomicrofluidics 2012, 6(1):014105. 10.1063/1.3677369
-
(2012)
Biomicrofluidics
, vol.6
, Issue.1
, pp. 014105
-
-
Yazdi, S.H.1
White, I.M.2
-
244
-
-
70249089988
-
Nanofluidic electrokinetics in nanoparticle crystal
-
10.1063/1.3223774
-
Chen Z. Wang Y. Wang W. Li Z. Nanofluidic electrokinetics in nanoparticle crystal. Appl. Phys. Lett. 2009, 95(10):102105. 10.1063/1.3223774
-
(2009)
Appl. Phys. Lett.
, vol.95
, Issue.10
, pp. 102105
-
-
Chen, Z.1
Wang, Y.2
Wang, W.3
Li, Z.4
-
245
-
-
41449087806
-
Analysis and experiment of capillary valves for microfluidics on a rotating disk
-
10.1007/s10404-007-0196-x
-
Chen J. Huang P.-C. Lin M.-G. Analysis and experiment of capillary valves for microfluidics on a rotating disk. Microfluid. Nanofluid. 2008, 4(5):427-437. 10.1007/s10404-007-0196-x
-
(2008)
Microfluid. Nanofluid.
, vol.4
, Issue.5
, pp. 427-437
-
-
Chen, J.1
Huang, P.-C.2
Lin, M.-G.3
-
247
-
-
84864692604
-
Direct-writing colloidal photonic crystal microfluidic chips by inkjet printing for label-free protein detection
-
10.1039/c2lc40311k
-
Shen W. Li M. Ye C. Jiang L. Song Y. Direct-writing colloidal photonic crystal microfluidic chips by inkjet printing for label-free protein detection. Lab Chip 2012, 12(17):3089-3095. 10.1039/c2lc40311k
-
(2012)
Lab Chip
, vol.12
, Issue.17
, pp. 3089-3095
-
-
Shen, W.1
Li, M.2
Ye, C.3
Jiang, L.4
Song, Y.5
-
248
-
-
77956128380
-
Suspended nanoparticle crystal (S-NPC): A nanofluidics-based, electrical read-out biosensor
-
10.1039/c004758a
-
Lei Y. Xie F. Wang W. Wu W. Li Z. Suspended nanoparticle crystal (S-NPC): A nanofluidics-based, electrical read-out biosensor. Lab Chip 2010, 10(18):2338-2340. 10.1039/c004758a
-
(2010)
Lab Chip
, vol.10
, Issue.18
, pp. 2338-2340
-
-
Lei, Y.1
Xie, F.2
Wang, W.3
Wu, W.4
Li, Z.5
-
249
-
-
77954321284
-
Nanofluidic diode in a suspended nanoparticle crystal
-
10.1063/1.3456563
-
Lei Y. Wang W. Wu W. Li Z. Nanofluidic diode in a suspended nanoparticle crystal. Appl. Phys. Lett. 2010, 96(26):263102. 10.1063/1.3456563
-
(2010)
Appl. Phys. Lett.
, vol.96
, Issue.26
, pp. 263102
-
-
Lei, Y.1
Wang, W.2
Wu, W.3
Li, Z.4
-
250
-
-
84877674784
-
Current rectification in heterogeneous nanoparticle crystals
-
Seoul, Korea, 2-4 June.
-
Zheng M. Lei Y. Wang W. Wu W. Li Z. Current rectification in heterogeneous nanoparticle crystals. The International Symposium on Microchemistry and Microsystems (ISMM) 2011, and in Seoul, Korea, 2-4 June.
-
(2011)
The International Symposium on Microchemistry and Microsystems (ISMM)
-
-
Zheng, M.1
Lei, Y.2
Wang, W.3
Wu, W.4
Li, Z.5
-
251
-
-
54549090006
-
Simple and cost-effective fabrication of two-dimensional plastic nanochannels from silica nanowire templates
-
10.1007/s10404-008-0314-4
-
Zhang L. Gu F. Tong L. Yin X. Simple and cost-effective fabrication of two-dimensional plastic nanochannels from silica nanowire templates. Microfluid. Nanofluid. 2008, 5(6):727-732. 10.1007/s10404-008-0314-4
-
(2008)
Microfluid. Nanofluid.
, vol.5
, Issue.6
, pp. 727-732
-
-
Zhang, L.1
Gu, F.2
Tong, L.3
Yin, X.4
-
252
-
-
0348197032
-
Nanofluidic channels with elliptical cross sections formed using a nonlithographic process
-
10.1063/1.1633008
-
Czaplewski D.A. Kameoka J. Mathers R. Coates G.W. Craighead H.G. Nanofluidic channels with elliptical cross sections formed using a nonlithographic process. Appl. Phys. Lett. 2003, 83(23):4836-4838. 10.1063/1.1633008
-
(2003)
Appl. Phys. Lett.
, vol.83
, Issue.23
, pp. 4836-4838
-
-
Czaplewski, D.A.1
Kameoka, J.2
Mathers, R.3
Coates, G.W.4
Craighead, H.G.5
-
253
-
-
77958523857
-
Fabrication of monolithic polymer nanofluidic channels using nanowires as sacrificial templates
-
10.1088/0957-4484/21/42/425302
-
Chu K.S. Kim S. Chung H. Oh J.H. Seong T.Y. An B.H. Kim Y.K. Park J.H. Do Y.R. Kim W. Fabrication of monolithic polymer nanofluidic channels using nanowires as sacrificial templates. Nanotechnology 2010, 21(42):425302. 10.1088/0957-4484/21/42/425302
-
(2010)
Nanotechnology
, vol.21
, Issue.42
, pp. 425302
-
-
Chu, K.S.1
Kim, S.2
Chung, H.3
Oh, J.H.4
Seong, T.Y.5
An, B.H.6
Kim, Y.K.7
Park, J.H.8
Do, Y.R.9
Kim, W.10
-
254
-
-
85027949236
-
Monolithic fabrication of nanochannels using core-sheath nanofibers as sacrificial mold
-
10.1007/s10404-011-0801-x
-
Xu S. Zhao Y. Monolithic fabrication of nanochannels using core-sheath nanofibers as sacrificial mold. Microfluid. Nanofluid. 2011, 11(3):359-365. 10.1007/s10404-011-0801-x
-
(2011)
Microfluid. Nanofluid.
, vol.11
, Issue.3
, pp. 359-365
-
-
Xu, S.1
Zhao, Y.2
-
255
-
-
77951469119
-
Fabrication of nanochannels with water-dissolvable nanowires
-
10.1088/0957-4484/21/19/195302
-
Gong W. Xue J. Zhuang Q. Wu X. Xu S. Fabrication of nanochannels with water-dissolvable nanowires. Nanotechnology 2010, 21(19):195302. 10.1088/0957-4484/21/19/195302
-
(2010)
Nanotechnology
, vol.21
, Issue.19
, pp. 195302
-
-
Gong, W.1
Xue, J.2
Zhuang, Q.3
Wu, X.4
Xu, S.5
-
256
-
-
65249161562
-
Fast nonlinear ion transport via field-induced hydrodynamic slip in sub-20-nm hydrophilic nanofluidic transistors
-
10.1021/nl802931r
-
Vermesh U. Choi J.W. Vermesh O. Fan R. Nagarah J. Heath J.R. Fast nonlinear ion transport via field-induced hydrodynamic slip in sub-20-nm hydrophilic nanofluidic transistors. Nano Lett. 2009, 9(4):1315-1319. 10.1021/nl802931r
-
(2009)
Nano Lett.
, vol.9
, Issue.4
, pp. 1315-1319
-
-
Vermesh, U.1
Choi, J.W.2
Vermesh, O.3
Fan, R.4
Nagarah, J.5
Heath, J.R.6
-
257
-
-
42549100930
-
The fabrication of polymeric nanochannels by electrospinning
-
10.1088/0957-4484/19/19/195304
-
Shin M.K. Kim S.K. Lee H. Kim S.I. Kim S.J. The fabrication of polymeric nanochannels by electrospinning. Nanotechnology 2008, 19(19):195304. 10.1088/0957-4484/19/19/195304
-
(2008)
Nanotechnology
, vol.19
, Issue.19
, pp. 195304
-
-
Shin, M.K.1
Kim, S.K.2
Lee, H.3
Kim, S.I.4
Kim, S.J.5
-
258
-
-
0347988239
-
Aligned multiwalled carbon nanotube membranes
-
10.1126/science.1092048
-
Hinds B.J. Chopra N. Rantell T. Andrews R. Gavalas V. Bachas L.G. Aligned multiwalled carbon nanotube membranes. Science 2004, 303(5654):62-65. 10.1126/science.1092048
-
(2004)
Science
, vol.303
, Issue.5654
, pp. 62-65
-
-
Hinds, B.J.1
Chopra, N.2
Rantell, T.3
Andrews, R.4
Gavalas, V.5
Bachas, L.G.6
-
259
-
-
72849145988
-
Rectification of the ionic current through carbon nanotubes by electrostatic assembly of polyelectrolytes
-
10.1021/nl9020683
-
Scruggs N.R. Robertson J.W. F. Kasianowicz J.J. Migler K.B. Rectification of the ionic current through carbon nanotubes by electrostatic assembly of polyelectrolytes. Nano Lett. 2009, 9(11):3853-3859. 10.1021/nl9020683
-
(2009)
Nano Lett.
, vol.9
, Issue.11
, pp. 3853-3859
-
-
Scruggs, N.R.1
Robertson, J.W.F.2
Kasianowicz, J.J.3
Migler, K.B.4
-
260
-
-
25844455162
-
DNA translocation in inorganic nanotubes
-
10.1021/nl0509677
-
Fan R. Karnik R. Yue M. Li D. Majumdar A. Yang P. DNA translocation in inorganic nanotubes. Nano Lett. 2005, 5(9):1633-1637. 10.1021/nl0509677
-
(2005)
Nano Lett.
, vol.5
, Issue.9
, pp. 1633-1637
-
-
Fan, R.1
Karnik, R.2
Yue, M.3
Li, D.4
Majumdar, A.5
Yang, P.6
-
261
-
-
69549137368
-
Nanofluidic diodes based on nanotube heterojunctions
-
10.1021/nl9020123
-
Yan R. Liang W. Fan R. Yang P. Nanofluidic diodes based on nanotube heterojunctions. Nano Lett. 2009, 9(11):3820-3825. 10.1021/nl9020123
-
(2009)
Nano Lett.
, vol.9
, Issue.11
, pp. 3820-3825
-
-
Yan, R.1
Liang, W.2
Fan, R.3
Yang, P.4
-
262
-
-
74849103516
-
Translocation of single-stranded DNA through single-walled carbon nanotubes
-
10.1126/science.1181799
-
Liu H. He J. Tang J. Pang P. Cao D. Krstic P. Joseph S. Lindsay S. Nuckolls C. Translocation of single-stranded DNA through single-walled carbon nanotubes. Science 2010, 327(5961):64-67. 10.1126/science.1181799
-
(2010)
Science
, vol.327
, Issue.5961
, pp. 64-67
-
-
Liu, H.1
He, J.2
Tang, J.3
Pang, P.4
Cao, D.5
Krstic, P.6
Joseph, S.7
Lindsay, S.8
Nuckolls, C.9
-
263
-
-
80053311866
-
Origin of giant ionic currents in carbon nanotube channels
-
10.1021/nn202115s
-
Pang P. He J. Park J.H. Krstic P.S. Lindsay S. Origin of giant ionic currents in carbon nanotube channels. ACS Nano 2011, 5(9):7277-7283. 10.1021/nn202115s
-
(2011)
ACS Nano
, vol.5
, Issue.9
, pp. 7277-7283
-
-
Pang, P.1
He, J.2
Park, J.H.3
Krstic, P.S.4
Lindsay, S.5
-
264
-
-
0038631953
-
Fabrication of silica nanotube arrays from vertical silicon nanowire templates
-
10.1021/ja034163+
-
Fan R. Wu Y. Li D. Yue M. Majumdar A. Yang P. Fabrication of silica nanotube arrays from vertical silicon nanowire templates. J. Am. Chem. Soc. 2003, 125(18):5254-5255. 10.1021/ja034163+
-
(2003)
J. Am. Chem. Soc.
, vol.125
, Issue.18
, pp. 5254-5255
-
-
Fan, R.1
Wu, Y.2
Li, D.3
Yue, M.4
Majumdar, A.5
Yang, P.6
-
265
-
-
79955673596
-
A novel technique for fabrication of micro- and nanofluidic device with embedded single carbon nanotube
-
10.1016/j.snb.2009.10.003
-
Oh J. Kim G. Mattia D. Noh H. A novel technique for fabrication of micro- and nanofluidic device with embedded single carbon nanotube. Sens. Actuators B 2011, 154(1):67-72. 10.1016/j.snb.2009.10.003
-
(2011)
Sens. Actuators B
, vol.154
, Issue.1
, pp. 67-72
-
-
Oh, J.1
Kim, G.2
Mattia, D.3
Noh, H.4
-
266
-
-
79955580208
-
Measurement of the rate of water translocation through carbon nanotubes
-
10.1021/nl200843g
-
Qin X. Yuan Q. Zhao Y. Xie S. Liu Z. Measurement of the rate of water translocation through carbon nanotubes. Nano Lett. 2011, 11(5):2173-2177. 10.1021/nl200843g
-
(2011)
Nano Lett.
, vol.11
, Issue.5
, pp. 2173-2177
-
-
Qin, X.1
Yuan, Q.2
Zhao, Y.3
Xie, S.4
Liu, Z.5
-
267
-
-
36049037283
-
Nanofluidics in carbon nanotubes
-
10.1016/S1748-0132(07)70170-6
-
Noy A. Park H.G. Fornasiero F. Holt J.K. Grigoropoulos C.P. Bakajin O. Nanofluidics in carbon nanotubes. Nano Today 2007, 2(6):22-29. 10.1016/S1748-0132(07)70170-6
-
(2007)
Nano Today
, vol.2
, Issue.6
, pp. 22-29
-
-
Noy, A.1
Park, H.G.2
Fornasiero, F.3
Holt, J.K.4
Grigoropoulos, C.P.5
Bakajin, O.6
-
268
-
-
33646467115
-
Inorganic nanotubes: A novel platform for nanofluidics
-
10.1021/ar040274h
-
Goldberger J. Fan R. Yang P. Inorganic nanotubes: A novel platform for nanofluidics. Acc. Chem. Res. 2006, 39(4):239-248. 10.1021/ar040274h
-
(2006)
Acc. Chem. Res.
, vol.39
, Issue.4
, pp. 239-248
-
-
Goldberger, J.1
Fan, R.2
Yang, P.3
-
269
-
-
79958110338
-
UV-ablation nanochannels in micro/nanofluidics devices for biochemical analysis
-
10.1016/j.talanta.2011.03.057
-
Wang C. Ouyang J. Gao H.L. Chen H.W. Xu J.J. Xia X.H. Chen H.Y. UV-ablation nanochannels in micro/nanofluidics devices for biochemical analysis. Talanta 2011, 85(1):298-303. 10.1016/j.talanta.2011.03.057
-
(2011)
Talanta
, vol.85
, Issue.1
, pp. 298-303
-
-
Wang, C.1
Ouyang, J.2
Gao, H.L.3
Chen, H.W.4
Xu, J.J.5
Xia, X.H.6
Chen, H.Y.7
-
270
-
-
84863646982
-
Rapid protein concentration, efficient fluorescence labeling and purification on a micro/nanofluidics chip
-
10.1039/c2lc20977b
-
Wang C. Ouyang J. Ye D.K. Xu J.J. Chen H.Y. Xia X.H. Rapid protein concentration, efficient fluorescence labeling and purification on a micro/nanofluidics chip. Lab Chip 2012, 12(15):2664-2671. 10.1039/c2lc20977b
-
(2012)
Lab Chip
, vol.12
, Issue.15
, pp. 2664-2671
-
-
Wang, C.1
Ouyang, J.2
Ye, D.K.3
Xu, J.J.4
Chen, H.Y.5
Xia, X.H.6
-
271
-
-
79956098361
-
Fabrication of fluidic chips with 1-D nanochannels on PMMA substrates by photoresist-free UV-lithography and UV-assisted low-temperature bonding
-
10.1007/s10404-010-0753-6
-
Hu X. He Q. Zhang X. Chen H. Fabrication of fluidic chips with 1-D nanochannels on PMMA substrates by photoresist-free UV-lithography and UV-assisted low-temperature bonding. Microfluid. Nanofluid. 2010, 10(6):1223-1232. 10.1007/s10404-010-0753-6
-
(2010)
Microfluid. Nanofluid.
, vol.10
, Issue.6
, pp. 1223-1232
-
-
Hu, X.1
He, Q.2
Zhang, X.3
Chen, H.4
-
272
-
-
34249866869
-
Tuneable elastomeric nanochannels for nanofluidic manipulation
-
10.1038/nmat1907
-
Huh D. Mills K.L. Zhu X. Burns M.A. Thouless M.D. Takayama S. Tuneable elastomeric nanochannels for nanofluidic manipulation. Nature Mater. 2007, 6(6):424-428. 10.1038/nmat1907
-
(2007)
Nature Mater.
, vol.6
, Issue.6
, pp. 424-428
-
-
Huh, D.1
Mills, K.L.2
Zhu, X.3
Burns, M.A.4
Thouless, M.D.5
Takayama, S.6
-
273
-
-
77953110684
-
Instantaneous fabrication of arrays of normally closed, adjustable, and reversible nanochannels by tunnel cracking
-
10.1039/c000863j
-
Mills K.L. Huh D. Takayama S. Thouless M.D. Instantaneous fabrication of arrays of normally closed, adjustable, and reversible nanochannels by tunnel cracking. Lab Chip 2010, 10(12):1627-1630. 10.1039/c000863j
-
(2010)
Lab Chip
, vol.10
, Issue.12
, pp. 1627-1630
-
-
Mills, K.L.1
Huh, D.2
Takayama, S.3
Thouless, M.D.4
-
274
-
-
77957905850
-
Large scale lithography-free nano channel array on polystyrene
-
10.1039/c005245k
-
Xu B.Y. Xu J.J. Xia X.H. Chen H.Y. Large scale lithography-free nano channel array on polystyrene. Lab Chip 2010, 10(21):2894-2901. 10.1039/c005245k
-
(2010)
Lab Chip
, vol.10
, Issue.21
, pp. 2894-2901
-
-
Xu, B.Y.1
Xu, J.J.2
Xia, X.H.3
Chen, H.Y.4
-
275
-
-
52649103141
-
A simple, disposable microfluidic device for rapid protein concentration and purification via direct-printing
-
10.1039/b802778a
-
Yu H. Lu Y. Zhou Y.G. Wang F.B. He F.Y. Xia X.H. A simple, disposable microfluidic device for rapid protein concentration and purification via direct-printing. Lab Chip 2008, 8(9):1496-1501. 10.1039/b802778a
-
(2008)
Lab Chip
, vol.8
, Issue.9
, pp. 1496-1501
-
-
Yu, H.1
Lu, Y.2
Zhou, Y.G.3
Wang, F.B.4
He, F.Y.5
Xia, X.H.6
-
276
-
-
84877644469
-
Microchannel refill: A new method for fabricating 2D nanochannels in polymer substrates
-
10.1039/c2lc40078b
-
Li J.-M. Liu C. Ke X. Xu Z. Duan Y.-J. Li M. Zhang K.-P. Wang L.-D. Microchannel refill: A new method for fabricating 2D nanochannels in polymer substrates. Lab Chip 2012, 12(20):4059-4062. 10.1039/c2lc40078b
-
(2012)
Lab Chip
, vol.12
, Issue.20
, pp. 4059-4062
-
-
Li, J.-M.1
Liu, C.2
Ke, X.3
Xu, Z.4
Duan, Y.-J.5
Li, M.6
Zhang, K.-P.7
Wang, L.-D.8
-
277
-
-
0036709683
-
Processing and morphology of permeable polycrystalline silicon thin films
-
10.1557/JMR.2002.0329
-
Dougherty G.G. Pisano A.A. Sands T. Processing and morphology of permeable polycrystalline silicon thin films. J. Mater. Res. 2011, 17(09):2235-2242. 10.1557/JMR.2002.0329
-
(2011)
J. Mater. Res.
, vol.17
, Issue.9
, pp. 2235-2242
-
-
Dougherty, G.G.1
Pisano, A.A.2
Sands, T.3
-
278
-
-
33847132253
-
Charge- and size-based separation of macromolecules using ultrathin silicon membranes
-
10.1038/nature05532
-
Striemer C.C. Gaborski T.R. McGrath J.L. Fauchet P.M. Charge- and size-based separation of macromolecules using ultrathin silicon membranes. Nature 2007, 445(7129):749-753. 10.1038/nature05532
-
(2007)
Nature
, vol.445
, Issue.7129
, pp. 749-753
-
-
Striemer, C.C.1
Gaborski, T.R.2
McGrath, J.L.3
Fauchet, P.M.4
-
279
-
-
84865045234
-
Use of a columnar metal thin film as a nanosieve with sub-10 nm pores
-
10.1002/adma.201200755
-
Choi D.H. Han Y.D. Lee B.K. Choi S.J. Yoon H.C. Lee D.S. Yoon J.B. Use of a columnar metal thin film as a nanosieve with sub-10 nm pores. Adv. Mater. 2012, 22(32):4408-4413. 10.1002/adma.201200755
-
(2012)
Adv. Mater.
, vol.22
, Issue.32
, pp. 4408-4413
-
-
Choi, D.H.1
Han, Y.D.2
Lee, B.K.3
Choi, S.J.4
Yoon, H.C.5
Lee, D.S.6
Yoon, J.B.7
-
280
-
-
84865271472
-
Nanofracture on fused silica microchannel for Donnan exclusion based electrokinetic stacking of biomolecules
-
10.1039/c2lc40571g
-
Wu Z.Y. Li C.Y. Guo X.L. Li B. Zhang D.W. Xu Y. Fang F. Nanofracture on fused silica microchannel for Donnan exclusion based electrokinetic stacking of biomolecules. Lab on a Chip 2012, 12(18):3408-3412. 10.1039/c2lc40571g
-
(2012)
Lab on a Chip
, vol.12
, Issue.18
, pp. 3408-3412
-
-
Wu, Z.Y.1
Li, C.Y.2
Guo, X.L.3
Li, B.4
Zhang, D.W.5
Xu, Y.6
Fang, F.7
-
281
-
-
33746260423
-
Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip
-
10.1021/ac060031y
-
Kim S.M. Burns M.A. Hasselbrink E.F. Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip. Anal. Chem. 2006, 78(14):4779-4785. 10.1021/ac060031y
-
(2006)
Anal. Chem.
, vol.78
, Issue.14
, pp. 4779-4785
-
-
Kim, S.M.1
Burns, M.A.2
Hasselbrink, E.F.3
-
282
-
-
76949087447
-
Study on the kinetics of homogeneous enzyme reactions in a micro/nanofluidics device
-
10.1039/b915762j
-
Wang C. Li S.J. Wu Z.Q. Xu J.J. Chen H.Y. Xia X.H. Study on the kinetics of homogeneous enzyme reactions in a micro/nanofluidics device. Lab Chip 2010, 10(5):639-646. 10.1039/b915762j
-
(2010)
Lab Chip
, vol.10
, Issue.5
, pp. 639-646
-
-
Wang, C.1
Li, S.J.2
Wu, Z.Q.3
Xu, J.J.4
Chen, H.Y.5
Xia, X.H.6
-
283
-
-
70349444916
-
A method for nanofluidic device prototyping using elastomeric collapse
-
10.1073/pnas.0904004106
-
Park S.M. Huh Y.S. Craighead H.G. Erickson D. A method for nanofluidic device prototyping using elastomeric collapse. Proc. Natl. Acad. Sci. U.S.A. 2009, 106(37):15549-15554. 10.1073/pnas.0904004106
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, Issue.37
, pp. 15549-15554
-
-
Park, S.M.1
Huh, Y.S.2
Craighead, H.G.3
Erickson, D.4
-
284
-
-
84863216846
-
Fabrication of long poly(dimethyl siloxane) nanochannels by replicating protein deposit from confined solution evaporation
-
10.1063/1.4730371
-
Lo K.-F. Juang Y.-J. Fabrication of long poly(dimethyl siloxane) nanochannels by replicating protein deposit from confined solution evaporation. Biomicrofluidics 2012, 6(2):026504. 10.1063/1.4730371
-
(2012)
Biomicrofluidics
, vol.6
, Issue.2
, pp. 026504
-
-
Lo, K.-F.1
Juang, Y.-J.2
-
286
-
-
84856444636
-
Fabrication of nanometer-size structures in metal thin films using femtosecond laser Bessel beams
-
10.1063/1.3678030
-
Yalizay B. Ersoy T. Soylu B. Akturk S. Fabrication of nanometer-size structures in metal thin films using femtosecond laser Bessel beams. Appl. Phys. Lett. 2012, 100(3):031104. 10.1063/1.3678030
-
(2012)
Appl. Phys. Lett.
, vol.100
, Issue.3
, pp. 031104
-
-
Yalizay, B.1
Ersoy, T.2
Soylu, B.3
Akturk, S.4
-
287
-
-
78650400711
-
Injection molded nanofluidic chips: Fabrication method and functional tests using single-molecule DNA experiments
-
10.1039/c0lc00260g
-
Utko P. Persson F. Kristensen A. Larsen N.B. Injection molded nanofluidic chips: Fabrication method and functional tests using single-molecule DNA experiments. Lab Chip 2011, 11(2):303-308. 10.1039/c0lc00260g
-
(2011)
Lab Chip
, vol.11
, Issue.2
, pp. 303-308
-
-
Utko, P.1
Persson, F.2
Kristensen, A.3
Larsen, N.B.4
-
288
-
-
0030465241
-
Characterization of individual polynucleotide molecules using a membrane channel
-
10.1073/pnas.93.24.13770
-
Kasianowicz J.J. Brandin E. Branton D. Deamer D.W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. U.S.A. 1996, 93:13770-13773. 10.1073/pnas.93.24.13770
-
(1996)
Proc. Natl. Acad. Sci. U.S.A.
, vol.93
, pp. 13770-13773
-
-
Kasianowicz, J.J.1
Brandin, E.2
Branton, D.3
Deamer, D.W.4
-
289
-
-
0030447720
-
Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore
-
10.1126/science.274.5294.1859
-
Song L. Hobaugh M.R. Shustak C. Cheley S. Bayley H. Gouaux J.E. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 1996, 274(5294):1859-1866. 10.1126/science.274.5294.1859
-
(1996)
Science
, vol.274
, Issue.5294
, pp. 1859-1866
-
-
Song, L.1
Hobaugh, M.R.2
Shustak, C.3
Cheley, S.4
Bayley, H.5
Gouaux, J.E.6
-
290
-
-
70349527955
-
Discrimination of single base substitutions in a DNA strand immobilized in a biological nanopore
-
10.1021/nn900441x
-
Purnell R.F. Schmidt J.J. Discrimination of single base substitutions in a DNA strand immobilized in a biological nanopore. ACS Nano 2009, 3(9):2533-2538. 10.1021/nn900441x
-
(2009)
ACS Nano
, vol.3
, Issue.9
, pp. 2533-2538
-
-
Purnell, R.F.1
Schmidt, J.J.2
-
291
-
-
80455174619
-
Nanopore-based detection of circulating microRNAs in lung cancer patients
-
10.1038/nnano.2011.147
-
Wang Y. Zheng D. Tan Q. Wang M.X. Gu L.Q. Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat. Nanotechnol. 2011, 6(10):668-674. 10.1038/nnano.2011.147
-
(2011)
Nat. Nanotechnol.
, vol.6
, Issue.10
, pp. 668-674
-
-
Wang, Y.1
Zheng, D.2
Tan, Q.3
Wang, M.X.4
Gu, L.Q.5
-
292
-
-
0033776849
-
Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore
-
10.1038/80295
-
Movileanu L. Howorka S. Braha O. Bayley H. Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat. Biotechnol. 2000, 18:1091-1095. 10.1038/80295
-
(2000)
Nat. Biotechnol.
, vol.18
, pp. 1091-1095
-
-
Movileanu, L.1
Howorka, S.2
Braha, O.3
Bayley, H.4
-
293
-
-
84856729357
-
Protein detection by nanopores equipped with aptamers
-
10.1021/ja2105653
-
Rotem D. Jayasinghe L. Salichou M. Bayley H. Protein detection by nanopores equipped with aptamers. J. Am. Chem. Soc. 2012, 134(5):2781-2787. 10.1021/ja2105653
-
(2012)
J. Am. Chem. Soc.
, vol.134
, Issue.5
, pp. 2781-2787
-
-
Rotem, D.1
Jayasinghe, L.2
Salichou, M.3
Bayley, H.4
-
294
-
-
0035818604
-
Kinetics of duplex formation for individual DNA strands within a single protein nanopore
-
10.1073/pnas.231434698
-
Howorka S. Movileanu L. Braha O. Bayley H. Kinetics of duplex formation for individual DNA strands within a single protein nanopore. Proc. Natl. Acad. Sci. U.S.A. 2001, 98(23):12996-13001. 10.1073/pnas.231434698
-
(2001)
Proc. Natl. Acad. Sci. U.S.A.
, vol.98
, Issue.23
, pp. 12996-13001
-
-
Howorka, S.1
Movileanu, L.2
Braha, O.3
Bayley, H.4
-
295
-
-
34948868950
-
A biological porin engineered into a molecular, nanofluidic diode
-
10.1021/nl0716808
-
Miedema H. Vrouenraets M. Wierenga J. Meijberg W. Robillard G. Eisenberg B. A biological porin engineered into a molecular, nanofluidic diode. Nano Lett. 2007, 7(9):2886-2891. 10.1021/nl0716808
-
(2007)
Nano Lett.
, vol.7
, Issue.9
, pp. 2886-2891
-
-
Miedema, H.1
Vrouenraets, M.2
Wierenga, J.3
Meijberg, W.4
Robillard, G.5
Eisenberg, B.6
-
297
-
-
79960262278
-
Formation of hydrophilic nanochannels in the membrane of living cells by the ringlike stable protein-SP1
-
10.1021/nl201368w
-
Khoutorsky A. Heyman A. Shoseyov O. Spira M.E. Formation of hydrophilic nanochannels in the membrane of living cells by the ringlike stable protein-SP1. Nano Lett. 2011, 11(7):2901-2904. 10.1021/nl201368w
-
(2011)
Nano Lett.
, vol.11
, Issue.7
, pp. 2901-2904
-
-
Khoutorsky, A.1
Heyman, A.2
Shoseyov, O.3
Spira, M.E.4
-
298
-
-
4444247468
-
Functional engineered channels and pores (Review)
-
10.1080/09687680410001716853
-
Bayley H. Jayasinghe L. Functional engineered channels and pores (Review). Mol. Membr. Biol. 2004, 21(4):209-220. 10.1080/09687680410001716853
-
(2004)
Mol. Membr. Biol.
, vol.21
, Issue.4
, pp. 209-220
-
-
Bayley, H.1
Jayasinghe, L.2
-
299
-
-
64649086349
-
Ionic current rectification, breakdown, and switching in heterogeneous oxide nanofluidic devices
-
10.1021/nn8007542
-
Cheng L.J. Guo L.J. Ionic current rectification, breakdown, and switching in heterogeneous oxide nanofluidic devices. ACS Nano 2009, 3(3):575-584. 10.1021/nn8007542, and (.
-
(2009)
ACS Nano
, vol.3
, Issue.3
, pp. 575-584
-
-
Cheng, L.J.1
Guo, L.J.2
-
300
-
-
0000993888
-
Tailoring surfaces with silanes
-
Arkles B. Tailoring surfaces with silanes. CHEMTECH 1977, 7:766-778.
-
(1977)
CHEMTECH
, vol.7
, pp. 766-778
-
-
Arkles, B.1
-
301
-
-
69249206306
-
Fabrication and characterization of nanofluidic channels for studying molecular dynamics in confined environments
-
Master's thesis, (Massachusetts Institute of Technology).
-
Mao P. Fabrication and characterization of nanofluidic channels for studying molecular dynamics in confined environments. 2005, Master's thesis, (Massachusetts Institute of Technology).
-
(2005)
-
-
Mao, P.1
-
302
-
-
0043026989
-
Surface modification of multiwalled carbon nanotubes: Toward the tailoring of the interface in polymer composites
-
10.1021/cm020975d
-
Eitan A. Jiang K. Dukes D. Andrews R. Schadler L.S. Surface modification of multiwalled carbon nanotubes: Toward the tailoring of the interface in polymer composites. Chem. Mater. 2003, 15(16):3198-3201. 10.1021/cm020975d
-
(2003)
Chem. Mater.
, vol.15
, Issue.16
, pp. 3198-3201
-
-
Eitan, A.1
Jiang, K.2
Dukes, D.3
Andrews, R.4
Schadler, L.S.5
-
303
-
-
0036311229
-
Covalent chemistry of single-wall carbon nanotubes
-
10.1039/b201013p
-
Bahr J.L. Tour J.M. Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 2002, 12(7):1952-1958. 10.1039/b201013p
-
(2002)
J. Mater. Chem.
, vol.12
, Issue.7
, pp. 1952-1958
-
-
Bahr, J.L.1
Tour, J.M.2
-
304
-
-
0037028542
-
Organic functionalization of carbon nanotubes
-
10.1021/ja016954m
-
Georgakilas V. Kordatos K. Prato M. Guldi D.M. Holzinger M. Hirsch A. Organic functionalization of carbon nanotubes. J. Am. Chem. Soc. 2002, 124(5):760-761. 10.1021/ja016954m
-
(2002)
J. Am. Chem. Soc.
, vol.124
, Issue.5
, pp. 760-761
-
-
Georgakilas, V.1
Kordatos, K.2
Prato, M.3
Guldi, D.M.4
Holzinger, M.5
Hirsch, A.6
-
306
-
-
84859633774
-
DNA sequencing with nanopores
-
10.1038/nbt.2181
-
Schneider G.F. Dekker C. DNA sequencing with nanopores. Nat. Biotechnol. 2012, 30(4):326-328. 10.1038/nbt.2181
-
(2012)
Nat. Biotechnol.
, vol.30
, Issue.4
, pp. 326-328
-
-
Schneider, G.F.1
Dekker, C.2
-
307
-
-
77249128977
-
Single molecule sensing by nanopores and nanopore devices
-
10.1039/b907735a
-
Gu L.Q. Shim J.W. Single molecule sensing by nanopores and nanopore devices. Analyst 2010, 135:441-451. 10.1039/b907735a
-
(2010)
Analyst
, vol.135
, pp. 441-451
-
-
Gu, L.Q.1
Shim, J.W.2
-
308
-
-
27744551948
-
Status of ion track technology-Prospects of single tracks
-
10.1016/j.radmeas.2005.03.008
-
Spohr R. Status of ion track technology-Prospects of single tracks. Radiat. Meas. 2005, 40:191-202. 10.1016/j.radmeas.2005.03.008
-
(2005)
Radiat. Meas.
, vol.40
, pp. 191-202
-
-
Spohr, R.1
-
309
-
-
41149155320
-
Gated proton transport in aligned mesoporous silica films
-
10.1038/nmat2127
-
Fan R. Huh S. Yan R. Arnold J. Yang P. Gated proton transport in aligned mesoporous silica films. Nature Mater. 2008, 7(4):303-307. 10.1038/nmat2127
-
(2008)
Nature Mater.
, vol.7
, Issue.4
, pp. 303-307
-
-
Fan, R.1
Huh, S.2
Yan, R.3
Arnold, J.4
Yang, P.5
-
310
-
-
24744433042
-
Million-fold preconcentration of proteins and peptides by nanofluidic filter
-
10.1021/ac050321z
-
Wang Y.C. Stevens A.L. Han J. Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal. Chem. 2005, 77(14):4293-4299. 10.1021/ac050321z
-
(2005)
Anal. Chem.
, vol.77
, Issue.14
, pp. 4293-4299
-
-
Wang, Y.C.1
Stevens, A.L.2
Han, J.3
-
311
-
-
29744448539
-
Nanofilter array chip for fast gel-free biomolecule separation
-
10.1063/1.2149979
-
Fu J. Mao P. Han J. Nanofilter array chip for fast gel-free biomolecule separation. Appl. Phys. Lett. 2005, 87:263902. 10.1063/1.2149979
-
(2005)
Appl. Phys. Lett.
, vol.87
, pp. 263902
-
-
Fu, J.1
Mao, P.2
Han, J.3
-
312
-
-
34547465510
-
Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel
-
10.1103/PhysRevLett.99.044501
-
Stein D. Kruithof M. Dekker C. Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Phys. Rev. Lett. 2007, 99(4):044501. 10.1103/PhysRevLett.99.044501
-
(2007)
Phys. Rev. Lett.
, vol.99
, Issue.4
, pp. 044501
-
-
Stein, D.1
Kruithof, M.2
Dekker, C.3
-
313
-
-
29044446773
-
Maximum achievable aspect ratio in deep reactive ion etching of silicon due to aspect ratio dependent transport and the microloading effect
-
10.1116/1.2101678
-
Yeom J. Wu Y. Selby J.C. Shannon M.A. Maximum achievable aspect ratio in deep reactive ion etching of silicon due to aspect ratio dependent transport and the microloading effect. J. Vac. Sci. Technol. B 2005, 23(6):2319-2329. 10.1116/1.2101678
-
(2005)
J. Vac. Sci. Technol. B
, vol.23
, Issue.6
, pp. 2319-2329
-
-
Yeom, J.1
Wu, Y.2
Selby, J.C.3
Shannon, M.A.4
-
314
-
-
47249094027
-
Non-planar nanofluidic devices for single molecule analysis fabricated using nanoglassblowing
-
10.1088/0957-4484/19/31/315301
-
Strychalski E.A. Stavis S.M. Craighead H.G. Non-planar nanofluidic devices for single molecule analysis fabricated using nanoglassblowing. Nanotechnology 2008, 1931:315301. 10.1088/0957-4484/19/31/315301
-
(2008)
Nanotechnology
, vol.1931
, pp. 315301
-
-
Strychalski, E.A.1
Stavis, S.M.2
Craighead, H.G.3
-
315
-
-
84862016284
-
Nanopores as protein sensors
-
10.1038/nbt.2264
-
Howorka S. Siwy Z.S. Nanopores as protein sensors. Nat. Biotechnol. 2012, 30(6):506-507. 10.1038/nbt.2264
-
(2012)
Nat. Biotechnol.
, vol.30
, Issue.6
, pp. 506-507
-
-
Howorka, S.1
Siwy, Z.S.2
-
316
-
-
33845243958
-
Helium ion microscope: A new tool for nanoscale microscopy and metrology
-
10.1116/1.2357967
-
Ward B.W. Notte J.A. Economou N.P. Helium ion microscope: A new tool for nanoscale microscopy and metrology. J. Vac. Sci. Technol. B 2006, 24:2871-2874. 10.1116/1.2357967
-
(2006)
J. Vac. Sci. Technol. B
, vol.24
, pp. 2871-2874
-
-
Ward, B.W.1
Notte, J.A.2
Economou, N.P.3
-
318
-
-
79955535290
-
Preparation of rhombus-shaped micro/nanofluidic channels with dimensions ranging from hundred nanometers to several micrometers
-
10.1166/jnn.2010.2842
-
Xie F. Wang Y. Wang W. Li Z. Yossifon G. Chang H.-C. Preparation of rhombus-shaped micro/nanofluidic channels with dimensions ranging from hundred nanometers to several micrometers. J. Nanosci. Nanotechnol. 2010, 10(11):7277-7281. 10.1166/jnn.2010.2842
-
(2010)
J. Nanosci. Nanotechnol.
, vol.10
, Issue.11
, pp. 7277-7281
-
-
Xie, F.1
Wang, Y.2
Wang, W.3
Li, Z.4
Yossifon, G.5
Chang, H.-C.6
-
319
-
-
70349897897
-
One-dimensional alignment of SBA-15 films in microtrenches
-
10.1021/la902202s
-
Daiguji H. Tatsumi N. Kataoka S. Endo A. One-dimensional alignment of SBA-15 films in microtrenches. Langmuir 2009, 25(19):11221-11224. 10.1021/la902202s
-
(2009)
Langmuir
, vol.25
, Issue.19
, pp. 11221-11224
-
-
Daiguji, H.1
Tatsumi, N.2
Kataoka, S.3
Endo, A.4
-
320
-
-
85085399411
-
Ion transport in mesoporous silica thin films
-
Honolulu, Hawaii, USA, 13-17 March
-
Daiguji H. Nakayama D. Takahashi A. Kataoka S. Endo A. Ion transport in mesoporous silica thin films. Proceedings of the ASME/JSME 2011 8th Thermal Engineering Joint Conference 2011, and in Honolulu, Hawaii, USA, 13-17 March.
-
(2011)
Proceedings of the ASME/JSME 2011 8th Thermal Engineering Joint Conference
-
-
Daiguji, H.1
Nakayama, D.2
Takahashi, A.3
Kataoka, S.4
Endo, A.5
-
321
-
-
84859806565
-
Ion transport in mesoporous silica SBA-16 thin films with 3D cubic structures
-
10.1021/la204477h
-
Daiguji H. Hwang J. Takahashi A. Kataoka S. Endo A. Ion transport in mesoporous silica SBA-16 thin films with 3D cubic structures. Langmuir 2012, 28(7):3671-3677. 10.1021/la204477h
-
(2012)
Langmuir
, vol.28
, Issue.7
, pp. 3671-3677
-
-
Daiguji, H.1
Hwang, J.2
Takahashi, A.3
Kataoka, S.4
Endo, A.5
|