-
1
-
-
0035397522
-
Information geometry on hierarchy of probability distributions
-
Amari S. Information geometry on hierarchy of probability distributions. IEEE Trans. Inf. Theory 2001, 47(5):1701-1711.
-
(2001)
IEEE Trans. Inf. Theory
, vol.47
, Issue.5
, pp. 1701-1711
-
-
Amari, S.1
-
3
-
-
0033720238
-
Metrics that learn relevance
-
S. Kaski, J. Sinkkonen, Metrics that learn relevance, in: Proceedings of the International Joint Conference on Neural Networks, vol. 5, 2000, pp. 547-552.
-
(2000)
Proceedings of the International Joint Conference on Neural Networks
, vol.5
, pp. 547-552
-
-
Kaski, S.1
Sinkkonen, J.2
-
5
-
-
79952295497
-
Riemann manifold Langevin and Hamiltonian Monte Carlo methods
-
Girolami M., Calderhead B., Chin S.A. Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Statist. Soc. B 2011, 73(2):1-37.
-
(2011)
J. R. Statist. Soc. B
, vol.73
, Issue.2
, pp. 1-37
-
-
Girolami, M.1
Calderhead, B.2
Chin, S.A.3
-
6
-
-
33745012299
-
Modularity and community structure in networks
-
Newman M.E.J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006, 103(23):8577-8582.
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, Issue.23
, pp. 8577-8582
-
-
Newman, M.E.J.1
-
7
-
-
9144260753
-
Improved learning of Riemannian metrics for exploratory analysis
-
Peltonen J., Klami A., Kaski S. Improved learning of Riemannian metrics for exploratory analysis. Neural Networks 2004, 17:1087-1100.
-
(2004)
Neural Networks
, vol.17
, pp. 1087-1100
-
-
Peltonen, J.1
Klami, A.2
Kaski, S.3
-
8
-
-
0035392549
-
Bankruptcy analysis with self-organizing maps in learning metrics
-
Kaski S., Sinkkonen J., Peltonen J. Bankruptcy analysis with self-organizing maps in learning metrics. IEEE Trans. Neural Networks 2001, 12(4):936-947.
-
(2001)
IEEE Trans. Neural Networks
, vol.12
, Issue.4
, pp. 936-947
-
-
Kaski, S.1
Sinkkonen, J.2
Peltonen, J.3
-
9
-
-
1942418620
-
On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes
-
Ng A.Y., Jordan M.I. On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes. Proc. Adv. Neural Inf. Process. Syst. 2001, 14:841-848.
-
(2001)
Proc. Adv. Neural Inf. Process. Syst.
, vol.14
, pp. 841-848
-
-
Ng, A.Y.1
Jordan, M.I.2
-
11
-
-
84899620366
-
MatlabBGL Package, Version 4.0
-
D.F. Gleich, MatlabBGL Package, Version 4.0, 2008.
-
(2008)
-
-
Gleich, D.F.1
-
12
-
-
84887039714
-
The role of Fisher information in primary data space for neighbourhood mapping
-
H. Ruiz, I.H. Jarman, J.D. Martín, P.J.G. Lisboa, The role of Fisher information in primary data space for neighbourhood mapping, in: Proceedings of the European Symposium on Artificial Neural Networks, 2011, pp. 381-386.
-
(2011)
Proceedings of the European Symposium on Artificial Neural Networks
, pp. 381-386
-
-
Ruiz, H.1
Jarman, I.H.2
Martín, J.D.3
Lisboa, P.J.G.4
-
14
-
-
84872170445
-
Goodness of fit tests for the multiple logistic regression model
-
Hosmer D.W., Lemeshow S. Goodness of fit tests for the multiple logistic regression model. Commun. Stat. Theory Methods 1980, 9(10):1043-1069.
-
(1980)
Commun. Stat. Theory Methods
, vol.9
, Issue.10
, pp. 1043-1069
-
-
Hosmer, D.W.1
Lemeshow, S.2
-
15
-
-
84887006810
-
A nonlinear mapping for data structure analysis
-
Sammon J.W. A nonlinear mapping for data structure analysis. IEEE Trans. Comput.. 18 1969, 5(1969):401-409.
-
(1969)
IEEE Trans. Comput.. 18
, vol.5
, Issue.1969
, pp. 401-409
-
-
Sammon, J.W.1
-
16
-
-
81855177135
-
On the computation of the geodesic distance with an application to dimensionality reduction in a neuro-oncology problem
-
LNCS 7042
-
R. Cruz-Barbosa, D. Bautista-Villavicencio, A. Vellido, On the computation of the geodesic distance with an application to dimensionality reduction in a neuro-oncology problem, in: Proceedings of the Iberoamerican Congress on Pattern Recognition, LNCS 7042, 2011, pp. 483-490.
-
(2011)
Proceedings of the Iberoamerican Congress on Pattern Recognition
, pp. 483-490
-
-
Cruz-Barbosa, R.1
Bautista-Villavicencio, D.2
Vellido, A.3
|