-
3
-
-
9644259139
-
Using artificial neural networks to boost high-throughput discovery in heterogeneous catalysis
-
Baumes L., Farrusseng D., Lengliz M., Mirodatos C. Using artificial neural networks to boost high-throughput discovery in heterogeneous catalysis. QSAR Comb. Sci. 2004, 23:767-778.
-
(2004)
QSAR Comb. Sci.
, vol.23
, pp. 767-778
-
-
Baumes, L.1
Farrusseng, D.2
Lengliz, M.3
Mirodatos, C.4
-
4
-
-
34250687540
-
Prediction of ITQ-21 zeolite phase crystallinity: parametric versus non-parametric strategies
-
Baumes L.A., Moliner M., Corma A. Prediction of ITQ-21 zeolite phase crystallinity: parametric versus non-parametric strategies. QSAR Comb. Sci. 2007, 26:255-272.
-
(2007)
QSAR Comb. Sci.
, vol.26
, pp. 255-272
-
-
Baumes, L.A.1
Moliner, M.2
Corma, A.3
-
5
-
-
77953649493
-
Merging traditional and high-throughput approaches results in efficient design, synthesis and screening of catalysts for an industrial process
-
Baumes L.A., Serna P., Corma A. Merging traditional and high-throughput approaches results in efficient design, synthesis and screening of catalysts for an industrial process. Appl. Catal., A 2010, 381:197-208.
-
(2010)
Appl. Catal., A
, vol.381
, pp. 197-208
-
-
Baumes, L.A.1
Serna, P.2
Corma, A.3
-
8
-
-
0001225773
-
Feed-forward neural networks in chemistry: mathematical systems for classification and pattern recognition
-
Burns J.A., Whitesides G.M. Feed-forward neural networks in chemistry: mathematical systems for classification and pattern recognition. Chem. Rev. 1993, 93:2583-2599.
-
(1993)
Chem. Rev.
, vol.93
, pp. 2583-2599
-
-
Burns, J.A.1
Whitesides, G.M.2
-
10
-
-
0036882637
-
CO-free fuel processing for fuel cell applications
-
Choudhary T.V., Goodman D.W. CO-free fuel processing for fuel cell applications. Catal. Today 2002, 77:65-78.
-
(2002)
Catal. Today
, vol.77
, pp. 65-78
-
-
Choudhary, T.V.1
Goodman, D.W.2
-
11
-
-
19944410232
-
Integrating high-throughput characterization into combinatorial heterogeneous catalysis: unsupervised construction of quantitative structure/property relationship models
-
Corma A., Serra J.M., Serna P., Moliner M. Integrating high-throughput characterization into combinatorial heterogeneous catalysis: unsupervised construction of quantitative structure/property relationship models. J. Catal. 2005, 232:335-341.
-
(2005)
J. Catal.
, vol.232
, pp. 335-341
-
-
Corma, A.1
Serra, J.M.2
Serna, P.3
Moliner, M.4
-
12
-
-
34047177019
-
3 catalyst in the hydrogenation of 1,3-butadiene: building a basis for reproducible catalyst synthesis
-
3 catalyst in the hydrogenation of 1,3-butadiene: building a basis for reproducible catalyst synthesis. Appl. Catal., A 2007, 323:25-37.
-
(2007)
Appl. Catal., A
, vol.323
, pp. 25-37
-
-
Cukic, T.1
Kraehnert, R.2
Holena, M.3
Herein, D.4
Linke, D.5
Dingerdissen, U.6
-
13
-
-
0034747286
-
Design of a propane ammoxidation catalyst using artificial neural networks and genetic algorithms
-
Cundari T.R., Deng J., Zhao Y. Design of a propane ammoxidation catalyst using artificial neural networks and genetic algorithms. Ind. Eng. Chem. Res. 2001, 40:5475-5480.
-
(2001)
Ind. Eng. Chem. Res.
, vol.40
, pp. 5475-5480
-
-
Cundari, T.R.1
Deng, J.2
Zhao, Y.3
-
14
-
-
78049371866
-
2 adsorption over gold nanoparticles using density functional theory and artificial neural networks
-
2 adsorption over gold nanoparticles using density functional theory and artificial neural networks. J. Chem. Phys. 2010, 132:174113-174121.
-
(2010)
J. Chem. Phys.
, vol.132
, pp. 174113-174121
-
-
Davran-Candan, T.1
Günay, M.E.2
Yildirim, R.3
-
16
-
-
34247857661
-
Structural and chemical promoter effects of alkali (earth) and cerium oxides in CO oxidation on supported gold
-
Gluhoi A.C., Nieuwenhuys B.E. Structural and chemical promoter effects of alkali (earth) and cerium oxides in CO oxidation on supported gold. Catal. Today 2007, 122:226-232.
-
(2007)
Catal. Today
, vol.122
, pp. 226-232
-
-
Gluhoi, A.C.1
Nieuwenhuys, B.E.2
-
17
-
-
0035746953
-
Selective oxidation of CO, over supported Au catalysts
-
Grisel R.J.H., Nieuwenhuys B.E. Selective oxidation of CO, over supported Au catalysts. J. Catal. 2001, 199:48-59.
-
(2001)
J. Catal.
, vol.199
, pp. 48-59
-
-
Grisel, R.J.H.1
Nieuwenhuys, B.E.2
-
20
-
-
44049089688
-
3 catalyst for selective CO oxidation in hydrogen-rich streams
-
3 catalyst for selective CO oxidation in hydrogen-rich streams. Chem. Eng. J. 2008, 140:324-331.
-
(2008)
Chem. Eng. J.
, vol.140
, pp. 324-331
-
-
Günay, M.E.1
Yildirim, R.2
-
21
-
-
52049107833
-
Simultaneous modeling of enzyme production and biomass growth in recombinant Escherichia coli using artificial neural networks
-
Günay M.E., Nikerel I.E., Oner E.T., Kirdar B., Yildirim R. Simultaneous modeling of enzyme production and biomass growth in recombinant Escherichia coli using artificial neural networks. Biochem. Eng. J. 2008, 42:329-335.
-
(2008)
Biochem. Eng. J.
, vol.42
, pp. 329-335
-
-
Günay, M.E.1
Nikerel, I.E.2
Oner, E.T.3
Kirdar, B.4
Yildirim, R.5
-
22
-
-
77649235238
-
3 catalysts using modular neural networks: combining preparation and operational variables
-
3 catalysts using modular neural networks: combining preparation and operational variables. Appl. Catal., A 2010, 377:174-180.
-
(2010)
Appl. Catal., A
, vol.377
, pp. 174-180
-
-
Günay, M.E.1
Yildirim, R.2
-
23
-
-
80855144330
-
Neural network analysis of selective CO oxidation over copper-based catalysts for knowledge extraction from published data in the literature
-
Günay M.E., Yildirim R. Neural network analysis of selective CO oxidation over copper-based catalysts for knowledge extraction from published data in the literature. Ind. Eng. Chem. Res. 2011, 50:12488-12500.
-
(2011)
Ind. Eng. Chem. Res.
, vol.50
, pp. 12488-12500
-
-
Günay, M.E.1
Yildirim, R.2
-
24
-
-
84855823959
-
3 (M=K, Ni, Co) using modular artificial neural networks
-
3 (M=K, Ni, Co) using modular artificial neural networks. Int. J. Hydrogen Energy 2012, 37:2094-2102.
-
(2012)
Int. J. Hydrogen Energy
, vol.37
, pp. 2094-2102
-
-
Günay, M.E.1
Akpinar, F.2
Onsan, Z.I.3
Yildirim, R.4
-
25
-
-
0001545744
-
Neural network as a tool for catalyst development
-
Hattori T., Kito S. Neural network as a tool for catalyst development. Catal. Today 1995, 23:347-355.
-
(1995)
Catal. Today
, vol.23
, pp. 347-355
-
-
Hattori, T.1
Kito, S.2
-
26
-
-
0034372481
-
Applications of artificial neural networks in chemical engineering
-
Himmelblau D.M. Applications of artificial neural networks in chemical engineering. Korean J. Chem. Eng. 2000, 17:373-392.
-
(2000)
Korean J. Chem. Eng.
, vol.17
, pp. 373-392
-
-
Himmelblau, D.M.1
-
27
-
-
0038487623
-
Feedforward neural networks in catalysis: a tool for the approximation of the dependency of yield on catalyst composition, and for knowledge extraction
-
Holena M., Baerns M. Feedforward neural networks in catalysis: a tool for the approximation of the dependency of yield on catalyst composition, and for knowledge extraction. Catal. Today 2003, 81:485-494.
-
(2003)
Catal. Today
, vol.81
, pp. 485-494
-
-
Holena, M.1
Baerns, M.2
-
29
-
-
79751534610
-
Prediction and analysis of the cathode catalyst layer performance of proton exchange membrane fuel cells using artificial neural network and statistical methods
-
Khajeh-Hosseini-Dalasm N., Ahadian S., Fushinobu K., Okazaki K., Kawazoe Y. Prediction and analysis of the cathode catalyst layer performance of proton exchange membrane fuel cells using artificial neural network and statistical methods. J. Power Sources 2011, 196:3750-3756.
-
(2011)
J. Power Sources
, vol.196
, pp. 3750-3756
-
-
Khajeh-Hosseini-Dalasm, N.1
Ahadian, S.2
Fushinobu, K.3
Okazaki, K.4
Kawazoe, Y.5
-
30
-
-
34547941416
-
Analysis of catalytic performance by partial differentiation of neural network pattern
-
Kito S., Hattori T. Analysis of catalytic performance by partial differentiation of neural network pattern. Chem. Eng. Sci. 2007, 62:5575-5578.
-
(2007)
Chem. Eng. Sci.
, vol.62
, pp. 5575-5578
-
-
Kito, S.1
Hattori, T.2
-
36
-
-
34249329952
-
A hybrid modular neural network architecture with fuzzy Sugeno integration for time series forecasting
-
Melin P., Mancilla A., Lopez M., Mendoza O. A hybrid modular neural network architecture with fuzzy Sugeno integration for time series forecasting. Appl. Soft Comp. 2007, 7:1217-1226.
-
(2007)
Appl. Soft Comp.
, vol.7
, pp. 1217-1226
-
-
Melin, P.1
Mancilla, A.2
Lopez, M.3
Mendoza, O.4
-
37
-
-
37249067960
-
New catalytic materials for the high-temperature synthesis of hydrocyanic acid from methane and ammonia by high-throughput approach
-
Moehmel S., Steinfeldt N., Engelschalt S., Holena M., Kolf S., Baerns M., Dingerdissen U., Wolf D., Weber R., Bewersdorf M. New catalytic materials for the high-temperature synthesis of hydrocyanic acid from methane and ammonia by high-throughput approach. Appl. Catal., A 2008, 334:73-83.
-
(2008)
Appl. Catal., A
, vol.334
, pp. 73-83
-
-
Moehmel, S.1
Steinfeldt, N.2
Engelschalt, S.3
Holena, M.4
Kolf, S.5
Baerns, M.6
Dingerdissen, U.7
Wolf, D.8
Weber, R.9
Bewersdorf, M.10
-
38
-
-
0037908836
-
Neural network approach to support modelling of chemical reactors: problems, resolutions, criteria of application
-
Molga E. Neural network approach to support modelling of chemical reactors: problems, resolutions, criteria of application. J. Chem. Eng. Process. 2003, 42:675-695.
-
(2003)
J. Chem. Eng. Process.
, vol.42
, pp. 675-695
-
-
Molga, E.1
-
39
-
-
36049003131
-
Catalytic processes for clean hydrogen production from hydrocarbons
-
Onsan Z.I. Catalytic processes for clean hydrogen production from hydrocarbons. Turk. J. Chem. 2007, 31:531-550.
-
(2007)
Turk. J. Chem.
, vol.31
, pp. 531-550
-
-
Onsan, Z.I.1
-
41
-
-
47749098863
-
Combining high-throughput experimentation, advanced data modeling and fundamental knowledge to develop catalysts for the epoxidation of large olefins and fatty esters
-
Serna P., Baumes L.A., Moliner M., Corma A. Combining high-throughput experimentation, advanced data modeling and fundamental knowledge to develop catalysts for the epoxidation of large olefins and fatty esters. J. Catal. 2008, 258:25-34.
-
(2008)
J. Catal.
, vol.258
, pp. 25-34
-
-
Serna, P.1
Baumes, L.A.2
Moliner, M.3
Corma, A.4
-
43
-
-
0000671231
-
Ranking importance of input parameters of neural networks
-
Sung A.H. Ranking importance of input parameters of neural networks. Expert Syst. Appl. 1998, 15:405-411.
-
(1998)
Expert Syst. Appl.
, vol.15
, pp. 405-411
-
-
Sung, A.H.1
-
44
-
-
17344364219
-
Development of catalyst libraries for total oxidation of methane: a case study for combined application of "holographic research strategy and artificial neural networks" in catalyst library design
-
Tompos A., Margitfalvi J.L., Tfirst E., Végvari L., Jaloull M.A., Khalfalla H.A., Elgarni M.M. Development of catalyst libraries for total oxidation of methane: a case study for combined application of "holographic research strategy and artificial neural networks" in catalyst library design. Appl. Catal., A 2005, 285:65-78.
-
(2005)
Appl. Catal., A
, vol.285
, pp. 65-78
-
-
Tompos, A.1
Margitfalvi, J.L.2
Tfirst, E.3
Végvari, L.4
Jaloull, M.A.5
Khalfalla, H.A.6
Elgarni, M.M.7
-
45
-
-
0033325261
-
Efficient algorithm for training neural networks with one hidden layer
-
IEEE Press, Piscataway, NJ
-
Wilamowski B.M., Chen Y., Malinowski A. Efficient algorithm for training neural networks with one hidden layer. International Joint Conference on Neural Networks, vol. 3 1999, 1725-1728. IEEE Press, Piscataway, NJ.
-
(1999)
International Joint Conference on Neural Networks, vol. 3
, pp. 1725-1728
-
-
Wilamowski, B.M.1
Chen, Y.2
Malinowski, A.3
|