메뉴 건너뛰기




Volumn 125, Issue , 2013, Pages 51-57

Subspace partial least squares model for multivariate spectroscopic calibration

Author keywords

Ensemble learning; Multivariate calibration; Partial least squares; Subspace modeling

Indexed keywords

ARTICLE; CALIBRATION; CONTROLLED STUDY; FEASIBILITY STUDY; INFORMATION RETRIEVAL; INTERMETHOD COMPARISON; MACHINE LEARNING; MATHEMATICAL COMPUTING; MATHEMATICAL MODEL; MEASUREMENT ACCURACY; MULTIVARIATE ANALYSIS; PARTIAL LEAST SQUARES REGRESSION; PRIORITY JOURNAL; PROCESS DEVELOPMENT; SPECTROSCOPY; SUBSPACE PARTIAL LEAST SQUARES MODEL;

EID: 84877138128     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2013.03.016     Document Type: Article
Times cited : (9)

References (37)
  • 2
    • 0034329609 scopus 로고    scopus 로고
    • Spectroscopic monitoring of batch reactions for on-line fault detection and diagnosis
    • Westerhuis J.A., Gurden S.P., Smilde A.K. Spectroscopic monitoring of batch reactions for on-line fault detection and diagnosis. Analytical Chemistry 2000, 72:5322-5330.
    • (2000) Analytical Chemistry , vol.72 , pp. 5322-5330
    • Westerhuis, J.A.1    Gurden, S.P.2    Smilde, A.K.3
  • 3
    • 34250880177 scopus 로고    scopus 로고
    • Spectroscopic on-line monitoring of reactions in dispersed medium: chemometric challenges
    • Reis M.M., Araujo P.H.H., Sayer C., Giudici R. Spectroscopic on-line monitoring of reactions in dispersed medium: chemometric challenges. Analytica Chimica Acta 2007, 595:257-265.
    • (2007) Analytica Chimica Acta , vol.595 , pp. 257-265
    • Reis, M.M.1    Araujo, P.H.H.2    Sayer, C.3    Giudici, R.4
  • 4
    • 56949090101 scopus 로고    scopus 로고
    • Bayesian linear regression and variable selection for spectroscopic calibration
    • Chen T., Martin E. Bayesian linear regression and variable selection for spectroscopic calibration. Analytica Chimica Acta 2009, 631:13-21.
    • (2009) Analytica Chimica Acta , vol.631 , pp. 13-21
    • Chen, T.1    Martin, E.2
  • 7
    • 77952548488 scopus 로고    scopus 로고
    • An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis
    • Shao X.G., Bian X.H., Cai W.S. An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis. Analytica Chimica Acta 2010, 666:32-37.
    • (2010) Analytica Chimica Acta , vol.666 , pp. 32-37
    • Shao, X.G.1    Bian, X.H.2    Cai, W.S.3
  • 8
    • 78650953042 scopus 로고    scopus 로고
    • Mixture probabilistic PCR model for soft sensing of multimode processes
    • Ge Z., Gao F., Song Z. Mixture probabilistic PCR model for soft sensing of multimode processes. Chemometrics and Intelligent Laboratory Systems 2011, 105:91-105.
    • (2011) Chemometrics and Intelligent Laboratory Systems , vol.105 , pp. 91-105
    • Ge, Z.1    Gao, F.2    Song, Z.3
  • 9
    • 84856213867 scopus 로고    scopus 로고
    • Non-destructive dating of fiber-based gelatin silver prints using near-infrared spectroscopy and multivariate analysis
    • Martins A., Daffner L.A., Fenech A., McGlinchey C., Strlic M. Non-destructive dating of fiber-based gelatin silver prints using near-infrared spectroscopy and multivariate analysis. Analytical and Bioanalytical Chemistry 2012, 402:1459-1469.
    • (2012) Analytical and Bioanalytical Chemistry , vol.402 , pp. 1459-1469
    • Martins, A.1    Daffner, L.A.2    Fenech, A.3    McGlinchey, C.4    Strlic, M.5
  • 11
    • 83655201102 scopus 로고    scopus 로고
    • Calibration transfer of partial least squares jet fuel property models using a segmented virtual standards slope-bias correction method
    • Abdelkader M.F., Cooper J.B., Larkin C.M. Calibration transfer of partial least squares jet fuel property models using a segmented virtual standards slope-bias correction method. Chemometrics and Intelligent Laboratory Systems 2012, 110:64-73.
    • (2012) Chemometrics and Intelligent Laboratory Systems , vol.110 , pp. 64-73
    • Abdelkader, M.F.1    Cooper, J.B.2    Larkin, C.M.3
  • 12
    • 80053635996 scopus 로고    scopus 로고
    • Sparse partial least-squares regression and its applications to high-throughput data analysis
    • Lee D., Lee W., Lee Y., Pawitan Y. Sparse partial least-squares regression and its applications to high-throughput data analysis. Chemometrics and Intelligent Laboratory Systems 2011, 109:1-8.
    • (2011) Chemometrics and Intelligent Laboratory Systems , vol.109 , pp. 1-8
    • Lee, D.1    Lee, W.2    Lee, Y.3    Pawitan, Y.4
  • 13
    • 82255192408 scopus 로고    scopus 로고
    • Polynomial multivariate least-squares regression for modeling nonlinear data applied to in-depth characterization of chromatographic resolution
    • Vogt F., Gritti F., Guiochon G. Polynomial multivariate least-squares regression for modeling nonlinear data applied to in-depth characterization of chromatographic resolution. Journal of Chemometrics 2011, 25:575-585.
    • (2011) Journal of Chemometrics , vol.25 , pp. 575-585
    • Vogt, F.1    Gritti, F.2    Guiochon, G.3
  • 14
    • 79954505385 scopus 로고    scopus 로고
    • Quality prediction for polypropylene production process based on CLGPR model
    • Ge Z., Chen T., Song Z. Quality prediction for polypropylene production process based on CLGPR model. Control Engineering Practice 2011, 19:423-432.
    • (2011) Control Engineering Practice , vol.19 , pp. 423-432
    • Ge, Z.1    Chen, T.2    Song, Z.3
  • 16
    • 0036080160 scopus 로고    scopus 로고
    • Bagging, boosting and the random subspace method for linear classifiers
    • Skurichina M., Duin R.P.W. Bagging, boosting and the random subspace method for linear classifiers. Pattern Analysis and Applications 2002, 5:121-135.
    • (2002) Pattern Analysis and Applications , vol.5 , pp. 121-135
    • Skurichina, M.1    Duin, R.P.W.2
  • 17
    • 12144262779 scopus 로고    scopus 로고
    • Bio-molecular cancer prediction with random subspace ensembles of support vector machines
    • Bertoni A., Folgieri R., Valentini G. Bio-molecular cancer prediction with random subspace ensembles of support vector machines. Neurocomputing 2005, 63:535-539.
    • (2005) Neurocomputing , vol.63 , pp. 535-539
    • Bertoni, A.1    Folgieri, R.2    Valentini, G.3
  • 18
    • 33646258047 scopus 로고    scopus 로고
    • Random subspace method for multivariate feature selection
    • Lai C., Reinders M.J.T., Wessels L. Random subspace method for multivariate feature selection. Pattern Recognition Letters 2006, 27:1067-1076.
    • (2006) Pattern Recognition Letters , vol.27 , pp. 1067-1076
    • Lai, C.1    Reinders, M.J.T.2    Wessels, L.3
  • 19
    • 34247608749 scopus 로고    scopus 로고
    • A linear discriminant analysis framework based on random subspace for face recognition
    • Zhang X.X., Jia Y.D. A linear discriminant analysis framework based on random subspace for face recognition. Pattern Recognition 2007, 40:2585-2591.
    • (2007) Pattern Recognition , vol.40 , pp. 2585-2591
    • Zhang, X.X.1    Jia, Y.D.2
  • 20
    • 49749104280 scopus 로고    scopus 로고
    • Random subspace regression ensemble for near-infrared spectroscopic calibration of tobacco samples
    • Tan C., Li M.L., Qin X. Random subspace regression ensemble for near-infrared spectroscopic calibration of tobacco samples. Analytical Sciences 2008, 24:647-653.
    • (2008) Analytical Sciences , vol.24 , pp. 647-653
    • Tan, C.1    Li, M.L.2    Qin, X.3
  • 21
    • 40549108335 scopus 로고    scopus 로고
    • Evolved feature weighting for random subspace classifier
    • Nanni L., Lumini A. Evolved feature weighting for random subspace classifier. IEEE Transactions on Neural Networks 2008, 19:363-366.
    • (2008) IEEE Transactions on Neural Networks , vol.19 , pp. 363-366
    • Nanni, L.1    Lumini, A.2
  • 22
    • 67349169203 scopus 로고    scopus 로고
    • Semi-random subspace method for face recognition
    • Zhu Y.H., Liu J., Chen S.C. Semi-random subspace method for face recognition. Image and Vision Computing 2009, 27:1358-1370.
    • (2009) Image and Vision Computing , vol.27 , pp. 1358-1370
    • Zhu, Y.H.1    Liu, J.2    Chen, S.C.3
  • 23
    • 77952551651 scopus 로고    scopus 로고
    • Binary SIPPER plankton image classification using random subspace
    • Zhao F., Lin F., Seah H.S. Binary SIPPER plankton image classification using random subspace. Neurocomputing 2010, 73:1853-1860.
    • (2010) Neurocomputing , vol.73 , pp. 1853-1860
    • Zhao, F.1    Lin, F.2    Seah, H.S.3
  • 27
    • 84855222926 scopus 로고    scopus 로고
    • Leveraging k-NN for generic classification boosting
    • Piro P., Nock R., Nielsen F., Barlaud M. Leveraging k-NN for generic classification boosting. Neurocomputing 2012, 80:3-9.
    • (2012) Neurocomputing , vol.80 , pp. 3-9
    • Piro, P.1    Nock, R.2    Nielsen, F.3    Barlaud, M.4
  • 28
    • 72249099895 scopus 로고    scopus 로고
    • Multimode process monitoring based on Bayesian method
    • Ge Z., Song Z. Multimode process monitoring based on Bayesian method. Journal of Chemometrics 2009, 23:636-650.
    • (2009) Journal of Chemometrics , vol.23 , pp. 636-650
    • Ge, Z.1    Song, Z.2
  • 29
    • 77952361709 scopus 로고    scopus 로고
    • Nonlinear probabilistic fault detection based on Gaussian process latent variable model
    • Ge Z., Song Z. Nonlinear probabilistic fault detection based on Gaussian process latent variable model. Industrial and Engineering Chemistry Research 2010, 49:4792-4799.
    • (2010) Industrial and Engineering Chemistry Research , vol.49 , pp. 4792-4799
    • Ge, Z.1    Song, Z.2
  • 30
    • 84859392648 scopus 로고    scopus 로고
    • A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses
    • Yu J. A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses. Computers and Chemical Engineering 2012, 41:134-144.
    • (2012) Computers and Chemical Engineering , vol.41 , pp. 134-144
    • Yu, J.1
  • 31
    • 77953121551 scopus 로고    scopus 로고
    • Maximum-likelihood mixture factor analysis model and its application for process monitoring
    • Ge Z., Song Z. Maximum-likelihood mixture factor analysis model and its application for process monitoring. Chemometrics and Intelligent Laboratory Systems 2010, 102:53-61.
    • (2010) Chemometrics and Intelligent Laboratory Systems , vol.102 , pp. 53-61
    • Ge, Z.1    Song, Z.2
  • 32
    • 84861191986 scopus 로고    scopus 로고
    • A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring
    • Rashid M.M., Yu J. A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring. Chemometrics and Intelligent Laboratory Systems 2012, 115:44-58.
    • (2012) Chemometrics and Intelligent Laboratory Systems , vol.115 , pp. 44-58
    • Rashid, M.M.1    Yu, J.2
  • 33
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • Yu J., Qin S.J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AICHE Journal 2008, 54:1811-1829.
    • (2008) AICHE Journal , vol.54 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 34
    • 78650358993 scopus 로고    scopus 로고
    • Mixture Bayesian regularization method of PPCA for multimode process monitoring
    • Ge Z., Song Z. Mixture Bayesian regularization method of PPCA for multimode process monitoring. AICHE Journal 2010, 56:2838-2849.
    • (2010) AICHE Journal , vol.56 , pp. 2838-2849
    • Ge, Z.1    Song, Z.2
  • 35
    • 80051914224 scopus 로고    scopus 로고
    • Two-dimensional Bayesian monitoring method for nonlinear multimode processes
    • Ge Z., Gao F., Song Z. Two-dimensional Bayesian monitoring method for nonlinear multimode processes. Chemical Engineering Science 2011, 66:5173-5183.
    • (2011) Chemical Engineering Science , vol.66 , pp. 5173-5183
    • Ge, Z.1    Gao, F.2    Song, Z.3
  • 36
    • 79952591121 scopus 로고    scopus 로고
    • Nonlinear bioprocess monitoring using multiway kernel localized fisher discriminant analysis
    • Yu J. Nonlinear bioprocess monitoring using multiway kernel localized fisher discriminant analysis. Industrial and Engineering Chemistry Research 2011, 50:3390-3402.
    • (2011) Industrial and Engineering Chemistry Research , vol.50 , pp. 3390-3402
    • Yu, J.1
  • 37
    • 81055156706 scopus 로고    scopus 로고
    • A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes
    • Yu J. A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes. Chemical Engineering Science 2012, 68:506-519.
    • (2012) Chemical Engineering Science , vol.68 , pp. 506-519
    • Yu, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.