-
1
-
-
0032517819
-
Orthogonal signal correction of near-infrared spectra
-
Wold S., Antti H., Lindgren F., Ohman J. Orthogonal signal correction of near-infrared spectra. Chemometrics and Intelligent Laboratory Systems 1998, 44:175-185.
-
(1998)
Chemometrics and Intelligent Laboratory Systems
, vol.44
, pp. 175-185
-
-
Wold, S.1
Antti, H.2
Lindgren, F.3
Ohman, J.4
-
2
-
-
0034329609
-
Spectroscopic monitoring of batch reactions for on-line fault detection and diagnosis
-
Westerhuis J.A., Gurden S.P., Smilde A.K. Spectroscopic monitoring of batch reactions for on-line fault detection and diagnosis. Analytical Chemistry 2000, 72:5322-5330.
-
(2000)
Analytical Chemistry
, vol.72
, pp. 5322-5330
-
-
Westerhuis, J.A.1
Gurden, S.P.2
Smilde, A.K.3
-
3
-
-
34250880177
-
Spectroscopic on-line monitoring of reactions in dispersed medium: chemometric challenges
-
Reis M.M., Araujo P.H.H., Sayer C., Giudici R. Spectroscopic on-line monitoring of reactions in dispersed medium: chemometric challenges. Analytica Chimica Acta 2007, 595:257-265.
-
(2007)
Analytica Chimica Acta
, vol.595
, pp. 257-265
-
-
Reis, M.M.1
Araujo, P.H.H.2
Sayer, C.3
Giudici, R.4
-
4
-
-
56949090101
-
Bayesian linear regression and variable selection for spectroscopic calibration
-
Chen T., Martin E. Bayesian linear regression and variable selection for spectroscopic calibration. Analytica Chimica Acta 2009, 631:13-21.
-
(2009)
Analytica Chimica Acta
, vol.631
, pp. 13-21
-
-
Chen, T.1
Martin, E.2
-
6
-
-
77952238401
-
A tutorial on support vector machine-based methods for classification problems in chemometrics
-
Luts J., Ojeda F., Van de Plas R., De Moor B., Van Huffel S., Suykens J.A.K. A tutorial on support vector machine-based methods for classification problems in chemometrics. Analytica Chimica Acta 2010, 665:129-145.
-
(2010)
Analytica Chimica Acta
, vol.665
, pp. 129-145
-
-
Luts, J.1
Ojeda, F.2
Van de Plas, R.3
De Moor, B.4
Van Huffel, S.5
Suykens, J.A.K.6
-
7
-
-
77952548488
-
An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis
-
Shao X.G., Bian X.H., Cai W.S. An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis. Analytica Chimica Acta 2010, 666:32-37.
-
(2010)
Analytica Chimica Acta
, vol.666
, pp. 32-37
-
-
Shao, X.G.1
Bian, X.H.2
Cai, W.S.3
-
9
-
-
84856213867
-
Non-destructive dating of fiber-based gelatin silver prints using near-infrared spectroscopy and multivariate analysis
-
Martins A., Daffner L.A., Fenech A., McGlinchey C., Strlic M. Non-destructive dating of fiber-based gelatin silver prints using near-infrared spectroscopy and multivariate analysis. Analytical and Bioanalytical Chemistry 2012, 402:1459-1469.
-
(2012)
Analytical and Bioanalytical Chemistry
, vol.402
, pp. 1459-1469
-
-
Martins, A.1
Daffner, L.A.2
Fenech, A.3
McGlinchey, C.4
Strlic, M.5
-
10
-
-
83655163765
-
Online sensor for monitoring a microalgal bioreactor system using support vector regression
-
Nadadoor V.R., Siegler H.D., Shah S.L., McCaffrey W.C., Ben-Zvi A. Online sensor for monitoring a microalgal bioreactor system using support vector regression. Chemometrics and Intelligent Laboratory Systems 2012, 110:38-48.
-
(2012)
Chemometrics and Intelligent Laboratory Systems
, vol.110
, pp. 38-48
-
-
Nadadoor, V.R.1
Siegler, H.D.2
Shah, S.L.3
McCaffrey, W.C.4
Ben-Zvi, A.5
-
11
-
-
83655201102
-
Calibration transfer of partial least squares jet fuel property models using a segmented virtual standards slope-bias correction method
-
Abdelkader M.F., Cooper J.B., Larkin C.M. Calibration transfer of partial least squares jet fuel property models using a segmented virtual standards slope-bias correction method. Chemometrics and Intelligent Laboratory Systems 2012, 110:64-73.
-
(2012)
Chemometrics and Intelligent Laboratory Systems
, vol.110
, pp. 64-73
-
-
Abdelkader, M.F.1
Cooper, J.B.2
Larkin, C.M.3
-
12
-
-
80053635996
-
Sparse partial least-squares regression and its applications to high-throughput data analysis
-
Lee D., Lee W., Lee Y., Pawitan Y. Sparse partial least-squares regression and its applications to high-throughput data analysis. Chemometrics and Intelligent Laboratory Systems 2011, 109:1-8.
-
(2011)
Chemometrics and Intelligent Laboratory Systems
, vol.109
, pp. 1-8
-
-
Lee, D.1
Lee, W.2
Lee, Y.3
Pawitan, Y.4
-
13
-
-
82255192408
-
Polynomial multivariate least-squares regression for modeling nonlinear data applied to in-depth characterization of chromatographic resolution
-
Vogt F., Gritti F., Guiochon G. Polynomial multivariate least-squares regression for modeling nonlinear data applied to in-depth characterization of chromatographic resolution. Journal of Chemometrics 2011, 25:575-585.
-
(2011)
Journal of Chemometrics
, vol.25
, pp. 575-585
-
-
Vogt, F.1
Gritti, F.2
Guiochon, G.3
-
14
-
-
79954505385
-
Quality prediction for polypropylene production process based on CLGPR model
-
Ge Z., Chen T., Song Z. Quality prediction for polypropylene production process based on CLGPR model. Control Engineering Practice 2011, 19:423-432.
-
(2011)
Control Engineering Practice
, vol.19
, pp. 423-432
-
-
Ge, Z.1
Chen, T.2
Song, Z.3
-
16
-
-
0036080160
-
Bagging, boosting and the random subspace method for linear classifiers
-
Skurichina M., Duin R.P.W. Bagging, boosting and the random subspace method for linear classifiers. Pattern Analysis and Applications 2002, 5:121-135.
-
(2002)
Pattern Analysis and Applications
, vol.5
, pp. 121-135
-
-
Skurichina, M.1
Duin, R.P.W.2
-
17
-
-
12144262779
-
Bio-molecular cancer prediction with random subspace ensembles of support vector machines
-
Bertoni A., Folgieri R., Valentini G. Bio-molecular cancer prediction with random subspace ensembles of support vector machines. Neurocomputing 2005, 63:535-539.
-
(2005)
Neurocomputing
, vol.63
, pp. 535-539
-
-
Bertoni, A.1
Folgieri, R.2
Valentini, G.3
-
19
-
-
34247608749
-
A linear discriminant analysis framework based on random subspace for face recognition
-
Zhang X.X., Jia Y.D. A linear discriminant analysis framework based on random subspace for face recognition. Pattern Recognition 2007, 40:2585-2591.
-
(2007)
Pattern Recognition
, vol.40
, pp. 2585-2591
-
-
Zhang, X.X.1
Jia, Y.D.2
-
20
-
-
49749104280
-
Random subspace regression ensemble for near-infrared spectroscopic calibration of tobacco samples
-
Tan C., Li M.L., Qin X. Random subspace regression ensemble for near-infrared spectroscopic calibration of tobacco samples. Analytical Sciences 2008, 24:647-653.
-
(2008)
Analytical Sciences
, vol.24
, pp. 647-653
-
-
Tan, C.1
Li, M.L.2
Qin, X.3
-
21
-
-
40549108335
-
Evolved feature weighting for random subspace classifier
-
Nanni L., Lumini A. Evolved feature weighting for random subspace classifier. IEEE Transactions on Neural Networks 2008, 19:363-366.
-
(2008)
IEEE Transactions on Neural Networks
, vol.19
, pp. 363-366
-
-
Nanni, L.1
Lumini, A.2
-
22
-
-
67349169203
-
Semi-random subspace method for face recognition
-
Zhu Y.H., Liu J., Chen S.C. Semi-random subspace method for face recognition. Image and Vision Computing 2009, 27:1358-1370.
-
(2009)
Image and Vision Computing
, vol.27
, pp. 1358-1370
-
-
Zhu, Y.H.1
Liu, J.2
Chen, S.C.3
-
23
-
-
77952551651
-
Binary SIPPER plankton image classification using random subspace
-
Zhao F., Lin F., Seah H.S. Binary SIPPER plankton image classification using random subspace. Neurocomputing 2010, 73:1853-1860.
-
(2010)
Neurocomputing
, vol.73
, pp. 1853-1860
-
-
Zhao, F.1
Lin, F.2
Seah, H.S.3
-
24
-
-
76249085189
-
Random subspace ensembles for fMRI classification
-
Kuncheva L.I., Rodriguez J.J., Plumpton C.O., Linden D.E.J., Johnston S.J. Random subspace ensembles for fMRI classification. IEEE Transactions on Medical Imaging 2010, 29:531-542.
-
(2010)
IEEE Transactions on Medical Imaging
, vol.29
, pp. 531-542
-
-
Kuncheva, L.I.1
Rodriguez, J.J.2
Plumpton, C.O.3
Linden, D.E.J.4
Johnston, S.J.5
-
26
-
-
77956619458
-
A comparative assessment of ensemble learning for credit scoring
-
Wang G., Hao J.X., Ma J.A., Jiang H.B. A comparative assessment of ensemble learning for credit scoring. Expert Systems with Applications 2011, 38:223-230.
-
(2011)
Expert Systems with Applications
, vol.38
, pp. 223-230
-
-
Wang, G.1
Hao, J.X.2
Ma, J.A.3
Jiang, H.B.4
-
27
-
-
84855222926
-
Leveraging k-NN for generic classification boosting
-
Piro P., Nock R., Nielsen F., Barlaud M. Leveraging k-NN for generic classification boosting. Neurocomputing 2012, 80:3-9.
-
(2012)
Neurocomputing
, vol.80
, pp. 3-9
-
-
Piro, P.1
Nock, R.2
Nielsen, F.3
Barlaud, M.4
-
28
-
-
72249099895
-
Multimode process monitoring based on Bayesian method
-
Ge Z., Song Z. Multimode process monitoring based on Bayesian method. Journal of Chemometrics 2009, 23:636-650.
-
(2009)
Journal of Chemometrics
, vol.23
, pp. 636-650
-
-
Ge, Z.1
Song, Z.2
-
29
-
-
77952361709
-
Nonlinear probabilistic fault detection based on Gaussian process latent variable model
-
Ge Z., Song Z. Nonlinear probabilistic fault detection based on Gaussian process latent variable model. Industrial and Engineering Chemistry Research 2010, 49:4792-4799.
-
(2010)
Industrial and Engineering Chemistry Research
, vol.49
, pp. 4792-4799
-
-
Ge, Z.1
Song, Z.2
-
30
-
-
84859392648
-
A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses
-
Yu J. A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses. Computers and Chemical Engineering 2012, 41:134-144.
-
(2012)
Computers and Chemical Engineering
, vol.41
, pp. 134-144
-
-
Yu, J.1
-
31
-
-
77953121551
-
Maximum-likelihood mixture factor analysis model and its application for process monitoring
-
Ge Z., Song Z. Maximum-likelihood mixture factor analysis model and its application for process monitoring. Chemometrics and Intelligent Laboratory Systems 2010, 102:53-61.
-
(2010)
Chemometrics and Intelligent Laboratory Systems
, vol.102
, pp. 53-61
-
-
Ge, Z.1
Song, Z.2
-
32
-
-
84861191986
-
A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring
-
Rashid M.M., Yu J. A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring. Chemometrics and Intelligent Laboratory Systems 2012, 115:44-58.
-
(2012)
Chemometrics and Intelligent Laboratory Systems
, vol.115
, pp. 44-58
-
-
Rashid, M.M.1
Yu, J.2
-
33
-
-
47549099484
-
Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
-
Yu J., Qin S.J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AICHE Journal 2008, 54:1811-1829.
-
(2008)
AICHE Journal
, vol.54
, pp. 1811-1829
-
-
Yu, J.1
Qin, S.J.2
-
34
-
-
78650358993
-
Mixture Bayesian regularization method of PPCA for multimode process monitoring
-
Ge Z., Song Z. Mixture Bayesian regularization method of PPCA for multimode process monitoring. AICHE Journal 2010, 56:2838-2849.
-
(2010)
AICHE Journal
, vol.56
, pp. 2838-2849
-
-
Ge, Z.1
Song, Z.2
-
35
-
-
80051914224
-
Two-dimensional Bayesian monitoring method for nonlinear multimode processes
-
Ge Z., Gao F., Song Z. Two-dimensional Bayesian monitoring method for nonlinear multimode processes. Chemical Engineering Science 2011, 66:5173-5183.
-
(2011)
Chemical Engineering Science
, vol.66
, pp. 5173-5183
-
-
Ge, Z.1
Gao, F.2
Song, Z.3
-
36
-
-
79952591121
-
Nonlinear bioprocess monitoring using multiway kernel localized fisher discriminant analysis
-
Yu J. Nonlinear bioprocess monitoring using multiway kernel localized fisher discriminant analysis. Industrial and Engineering Chemistry Research 2011, 50:3390-3402.
-
(2011)
Industrial and Engineering Chemistry Research
, vol.50
, pp. 3390-3402
-
-
Yu, J.1
-
37
-
-
81055156706
-
A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes
-
Yu J. A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes. Chemical Engineering Science 2012, 68:506-519.
-
(2012)
Chemical Engineering Science
, vol.68
, pp. 506-519
-
-
Yu, J.1
|