-
1
-
-
0036007028
-
ABA and sugar interactions regulating development: cross-talk or voices in a crowd?
-
Finkelstein R.R., Gibson S.I. ABA and sugar interactions regulating development: cross-talk or voices in a crowd?. Curr. Opin. Plant. Biol. 2002, 5:26-32.
-
(2002)
Curr. Opin. Plant. Biol.
, vol.5
, pp. 26-32
-
-
Finkelstein, R.R.1
Gibson, S.I.2
-
2
-
-
33745944196
-
Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses
-
Yamaguchi-Shinozaki K., Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 2006, 57:781-803.
-
(2006)
Annu. Rev. Plant Biol.
, vol.57
, pp. 781-803
-
-
Yamaguchi-Shinozaki, K.1
Shinozaki, K.2
-
3
-
-
77952511548
-
Abscisic acid: emergence of a core signaling network
-
Cutler S.R., et al. Abscisic acid: emergence of a core signaling network. Annu. Rev. Plant Biol. 2010, 61:651-679.
-
(2010)
Annu. Rev. Plant Biol.
, vol.61
, pp. 651-679
-
-
Cutler, S.R.1
-
4
-
-
77955885246
-
Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions
-
Hubbard K.E., et al. Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev. 2010, 24:1695-1708.
-
(2010)
Genes Dev.
, vol.24
, pp. 1695-1708
-
-
Hubbard, K.E.1
-
5
-
-
77955268028
-
ABA perception and signalling
-
Raghavendra A.S., et al. ABA perception and signalling. Trends Plant Sci. 2010, 15:395-401.
-
(2010)
Trends Plant Sci.
, vol.15
, pp. 395-401
-
-
Raghavendra, A.S.1
-
6
-
-
82555198807
-
A brand new START: abscisic acid perception and transduction in the guard cell
-
Joshi-Saha A., et al. A brand new START: abscisic acid perception and transduction in the guard cell. Sci. Signal. 2011, 4:re4.
-
(2011)
Sci. Signal.
, vol.4
-
-
Joshi-Saha, A.1
-
7
-
-
78049282841
-
Structural and functional insights into core ABA signaling
-
Weiner J.J., et al. Structural and functional insights into core ABA signaling. Curr. Opin. Plant Biol. 2010, 13:495-502.
-
(2010)
Curr. Opin. Plant Biol.
, vol.13
, pp. 495-502
-
-
Weiner, J.J.1
-
8
-
-
79959898336
-
ABA-mediated transcriptional regulation in response to osmotic stress in plants
-
Fujita Y., et al. ABA-mediated transcriptional regulation in response to osmotic stress in plants. J. Plant Res. 2011, 124:509-525.
-
(2011)
J. Plant Res.
, vol.124
, pp. 509-525
-
-
Fujita, Y.1
-
9
-
-
84871297170
-
Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants
-
Fujita Y., et al. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol. Plant. 2012, 147:15-27.
-
(2012)
Physiol. Plant.
, vol.147
, pp. 15-27
-
-
Fujita, Y.1
-
11
-
-
76649135526
-
PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid
-
Kang J., et al. PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:2355-2360.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 2355-2360
-
-
Kang, J.1
-
12
-
-
76649125252
-
ABC transporter AtABCG25 is involved in abscisic acid transport and responses
-
Kuromori T., et al. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:2361-2366.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 2361-2366
-
-
Kuromori, T.1
-
13
-
-
84862174344
-
Identification of an abscisic acid transporter by functional screening using the receptor complex as asensor
-
Kanno Y., et al. Identification of an abscisic acid transporter by functional screening using the receptor complex as asensor. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:9653-9658.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 9653-9658
-
-
Kanno, Y.1
-
14
-
-
66249133969
-
Regulators of PP2C phosphatase activity function as abscisic acid sensors
-
Ma Y., et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 2009, 324:1064-1068.
-
(2009)
Science
, vol.324
, pp. 1064-1068
-
-
Ma, Y.1
-
15
-
-
66249110335
-
Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins
-
Park S.Y., et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 2009, 324:1068-1071.
-
(2009)
Science
, vol.324
, pp. 1068-1071
-
-
Park, S.Y.1
-
16
-
-
71549134755
-
Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs
-
Santiago J., et al. Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J. 2009, 60:575-588.
-
(2009)
Plant J.
, vol.60
, pp. 575-588
-
-
Santiago, J.1
-
17
-
-
0036910331
-
Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production
-
Mustilli A.C., et al. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 2002, 14:3089-3099.
-
(2002)
Plant Cell
, vol.14
, pp. 3089-3099
-
-
Mustilli, A.C.1
-
18
-
-
33646187177
-
The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis
-
Yoshida R., et al. The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J. Biol. Chem. 2006, 281:5310-5318.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 5310-5318
-
-
Yoshida, R.1
-
19
-
-
70350468918
-
Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis
-
Umezawa T., et al. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:17588-17593.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 17588-17593
-
-
Umezawa, T.1
-
20
-
-
80051762835
-
Abscisic acid signal off the STARting block
-
Joshi-Saha A., et al. Abscisic acid signal off the STARting block. Mol. Plant 2011, 4:562-580.
-
(2011)
Mol. Plant
, vol.4
, pp. 562-580
-
-
Joshi-Saha, A.1
-
21
-
-
70249117473
-
Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase
-
Sirichandra C., et al. Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett. 2009, 583:2982-2986.
-
(2009)
FEBS Lett.
, vol.583
, pp. 2982-2986
-
-
Sirichandra, C.1
-
22
-
-
75849118341
-
Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair
-
Geiger D., et al. Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:21425-21430.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 21425-21430
-
-
Geiger, D.1
-
23
-
-
75849136096
-
A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells
-
Lee S.C., et al. A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:21419-21424.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 21419-21424
-
-
Lee, S.C.1
-
24
-
-
77950961702
-
Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1
-
Vahisalu T., et al. Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1. Plant J. 2010, 62:442-453.
-
(2010)
Plant J.
, vol.62
, pp. 442-453
-
-
Vahisalu, T.1
-
25
-
-
73149112823
-
Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase
-
Sato A., et al. Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem. J. 2009, 424:439-448.
-
(2009)
Biochem. J.
, vol.424
, pp. 439-448
-
-
Sato, A.1
-
26
-
-
32444443392
-
Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1
-
Furihata T., et al. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:1988-1993.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 1988-1993
-
-
Furihata, T.1
-
27
-
-
67651094045
-
Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2. 6/OST1 and SRK2I/SnRK2. 3, involved in ABA signaling are essential for the control of seed development and dormancy
-
Nakashima K., et al. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2. 6/OST1 and SRK2I/SnRK2. 3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol. 2009, 50:1345-1363.
-
(2009)
Plant Cell Physiol.
, vol.50
, pp. 1345-1363
-
-
Nakashima, K.1
-
28
-
-
71449104756
-
In vitro reconstitution of an abscisic acid signalling pathway
-
Fujii H., et al. In vitro reconstitution of an abscisic acid signalling pathway. Nature 2009, 462:660-664.
-
(2009)
Nature
, vol.462
, pp. 660-664
-
-
Fujii, H.1
-
29
-
-
66249083481
-
Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress
-
Fujii H., Zhu J.K. Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:8380-8385.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 8380-8385
-
-
Fujii, H.1
Zhu, J.K.2
-
30
-
-
71049140992
-
Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis
-
Fujita Y., et al. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol. 2009, 50:2123-2132.
-
(2009)
Plant Cell Physiol.
, vol.50
, pp. 2123-2132
-
-
Fujita, Y.1
-
31
-
-
77954763983
-
ABA receptors: the START of a new paradigm in phytohormone signalling
-
Klingler J.P., et al. ABA receptors: the START of a new paradigm in phytohormone signalling. J. Exp. Bot. 2010, 61:3199-3210.
-
(2010)
J. Exp. Bot.
, vol.61
, pp. 3199-3210
-
-
Klingler, J.P.1
-
32
-
-
79959880142
-
ABA in bryophytes: how a universal growth regulator in life became a plant hormone?
-
Takezawa D., et al. ABA in bryophytes: how a universal growth regulator in life became a plant hormone?. J. Plant Res. 2011, 124:437-453.
-
(2011)
J. Plant Res.
, vol.124
, pp. 437-453
-
-
Takezawa, D.1
-
33
-
-
79955651864
-
Evolution of abscisic acid synthesis and signaling mechanisms
-
Hauser F., et al. Evolution of abscisic acid synthesis and signaling mechanisms. Curr. Biol. 2011, 21:R346-R355.
-
(2011)
Curr. Biol.
, vol.21
-
-
Hauser, F.1
-
34
-
-
18944367488
-
Molecular evidence on plant divergence times
-
Sanderson M.J., et al. Molecular evidence on plant divergence times. Am. J. Bot. 2004, 91:1656-1665.
-
(2004)
Am. J. Bot.
, vol.91
, pp. 1656-1665
-
-
Sanderson, M.J.1
-
35
-
-
77957171376
-
Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana)
-
Rubinstein C.V., et al. Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana). New Phytol. 2010, 188:365-369.
-
(2010)
New Phytol.
, vol.188
, pp. 365-369
-
-
Rubinstein, C.V.1
-
36
-
-
77958506746
-
Genome-wide phylogenetic comparative analysis of plant transcriptional regulation: a timeline of loss, gain, expansion, and correlation with complexity
-
Lang D., et al. Genome-wide phylogenetic comparative analysis of plant transcriptional regulation: a timeline of loss, gain, expansion, and correlation with complexity. Genome Biol. Evol. 2010, 2:488-503.
-
(2010)
Genome Biol. Evol.
, vol.2
, pp. 488-503
-
-
Lang, D.1
-
37
-
-
79959876775
-
Origin and evolution of genes related to ABA metabolism and its signaling pathways
-
Hanada K., et al. Origin and evolution of genes related to ABA metabolism and its signaling pathways. J. Plant Res. 2011, 124:455-465.
-
(2011)
J. Plant Res.
, vol.124
, pp. 455-465
-
-
Hanada, K.1
-
38
-
-
78649683898
-
Thirsty plants and beyond: structural mechanisms of abscisic acid perception and signaling
-
Melcher K., et al. Thirsty plants and beyond: structural mechanisms of abscisic acid perception and signaling. Curr. Opin. Struct. Biol. 2010, 20:722-729.
-
(2010)
Curr. Opin. Struct. Biol.
, vol.20
, pp. 722-729
-
-
Melcher, K.1
-
39
-
-
79958738555
-
Abscisic acid receptors: past, present and future
-
Guo J., et al. Abscisic acid receptors: past, present and future. J. Integr. Plant Biol. 2011, 53:469-479.
-
(2011)
J. Integr. Plant Biol.
, vol.53
, pp. 469-479
-
-
Guo, J.1
-
40
-
-
84856581042
-
Selective inhibition of clade A phosphatases type 2C by PYR/PYL/RCAR abscisic acid receptors
-
Antoni R., et al. Selective inhibition of clade A phosphatases type 2C by PYR/PYL/RCAR abscisic acid receptors. Plant Physiol. 2012, 158:970-980.
-
(2012)
Plant Physiol.
, vol.158
, pp. 970-980
-
-
Antoni, R.1
-
41
-
-
71449125748
-
A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors
-
Melcher K., et al. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Nature 2009, 462:602-608.
-
(2009)
Nature
, vol.462
, pp. 602-608
-
-
Melcher, K.1
-
42
-
-
71449110803
-
Structural basis of abscisic acid signalling
-
Miyazono K., et al. Structural basis of abscisic acid signalling. Nature 2009, 462:609-614.
-
(2009)
Nature
, vol.462
, pp. 609-614
-
-
Miyazono, K.1
-
43
-
-
71449098436
-
Structural mechanism of abscisic acid binding and signaling by dimeric PYR1
-
Nishimura N., et al. Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 2009, 326:1373-1379.
-
(2009)
Science
, vol.326
, pp. 1373-1379
-
-
Nishimura, N.1
-
44
-
-
71449125712
-
The abscisic acid receptor PYR1 in complex with abscisic acid
-
Santiago J., et al. The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 2009, 462:665-668.
-
(2009)
Nature
, vol.462
, pp. 665-668
-
-
Santiago, J.1
-
45
-
-
71449087943
-
Structural insights into the mechanism of abscisic acid signaling by PYL proteins
-
Yin P., et al. Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat. Struct. Mol. Biol. 2009, 16:1230-1236.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 1230-1236
-
-
Yin, P.1
-
46
-
-
0035342462
-
Adaptations of the helix-grip fold for ligand binding and catalysis in the START domain superfamily
-
Iyer L.M., et al. Adaptations of the helix-grip fold for ligand binding and catalysis in the START domain superfamily. Proteins 2001, 43:134-144.
-
(2001)
Proteins
, vol.43
, pp. 134-144
-
-
Iyer, L.M.1
-
47
-
-
34247219263
-
Mechanism of auxin perception by the TIR1 ubiquitin ligase
-
Tan X., et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 2007, 446:640-645.
-
(2007)
Nature
, vol.446
, pp. 640-645
-
-
Tan, X.1
-
48
-
-
78549274705
-
Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor
-
Sheard L.B., et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 2010, 448:400-405.
-
(2010)
Nature
, vol.448
, pp. 400-405
-
-
Sheard, L.B.1
-
49
-
-
57049155555
-
Gibberellin-induced DELLA recognition by the gibberellin receptor GID1
-
Murase K., et al. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 2008, 456:459-463.
-
(2008)
Nature
, vol.456
, pp. 459-463
-
-
Murase, K.1
-
50
-
-
57049177946
-
Structural basis for gibberellin recognition by its receptor GID1
-
Shimada A., et al. Structural basis for gibberellin recognition by its receptor GID1. Nature 2008, 456:520-523.
-
(2008)
Nature
, vol.456
, pp. 520-523
-
-
Shimada, A.1
-
51
-
-
84859876115
-
A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin
-
Calderón Villalobos L.I., et al. A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat. Chem. Biol. 2012, 8:477-485.
-
(2012)
Nat. Chem. Biol.
, vol.8
, pp. 477-485
-
-
Calderón Villalobos, L.I.1
-
52
-
-
79955983426
-
Modulation of abscisic acid signaling in vivo by an engineered receptor-insensitive protein phosphatase type 2C allele
-
Dupeux F., et al. Modulation of abscisic acid signaling in vivo by an engineered receptor-insensitive protein phosphatase type 2C allele. Plant Physiol. 2011, 156:106-116.
-
(2011)
Plant Physiol.
, vol.156
, pp. 106-116
-
-
Dupeux, F.1
-
53
-
-
84989738125
-
The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana
-
Koornneef M., et al. The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol. Plant. 1984, 61:377-383.
-
(1984)
Physiol. Plant.
, vol.61
, pp. 377-383
-
-
Koornneef, M.1
-
54
-
-
0028339956
-
Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase
-
Leung J., et al. Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science 1994, 264:1448-1452.
-
(1994)
Science
, vol.264
, pp. 1448-1452
-
-
Leung, J.1
-
55
-
-
0028233382
-
A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana
-
Meyer K., et al. A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science 1994, 264:1452-1455.
-
(1994)
Science
, vol.264
, pp. 1452-1455
-
-
Meyer, K.1
-
56
-
-
84855477482
-
Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases
-
Soon F.-F., et al. Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science 2011, 335:85-88.
-
(2011)
Science
, vol.335
, pp. 85-88
-
-
Soon, F.-F.1
-
57
-
-
55849101514
-
The Bet v 1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands
-
Radauer C., et al. The Bet v 1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands. BMC Evol. Biol. 2008, 8:286.
-
(2008)
BMC Evol. Biol.
, vol.8
, pp. 286
-
-
Radauer, C.1
-
58
-
-
0032402848
-
Purification and cDNA cloning of cytokinin-specific binding protein from mung bean (Vigna radiata)
-
Fujimoto Y., et al. Purification and cDNA cloning of cytokinin-specific binding protein from mung bean (Vigna radiata). Eur. J. Biochem. 1998, 258:794-802.
-
(1998)
Eur. J. Biochem.
, vol.258
, pp. 794-802
-
-
Fujimoto, Y.1
-
59
-
-
0037255538
-
Crystal structure of a hypoallergenic isoform of the major birch pollen allergen Bet v 1 and its likely biological function as a plant steroid carrier
-
Markovic-Housley Z., et al. Crystal structure of a hypoallergenic isoform of the major birch pollen allergen Bet v 1 and its likely biological function as a plant steroid carrier. J. Mol. Biol. 2003, 325:123-133.
-
(2003)
J. Mol. Biol.
, vol.325
, pp. 123-133
-
-
Markovic-Housley, Z.1
-
60
-
-
78049257977
-
Plant nuclear hormone receptors: a role for small molecules in protein-protein interactions
-
Lumba S., et al. Plant nuclear hormone receptors: a role for small molecules in protein-protein interactions. Annu. Rev. Cell Dev. Biol. 2010, 26:445-469.
-
(2010)
Annu. Rev. Cell Dev. Biol.
, vol.26
, pp. 445-469
-
-
Lumba, S.1
-
61
-
-
79958076387
-
The molecular basis of ABA-independent inhibition of PP2Cs by a subclass of PYL proteins
-
Hao Q., et al. The molecular basis of ABA-independent inhibition of PP2Cs by a subclass of PYL proteins. Mol. Cell 2011, 42:662-672.
-
(2011)
Mol. Cell
, vol.42
, pp. 662-672
-
-
Hao, Q.1
-
62
-
-
84861021136
-
Complex structures of the abscisic acid receptor PYL3/RCAR13 reveal a unique regulatory mechanism
-
Zhang X., et al. Complex structures of the abscisic acid receptor PYL3/RCAR13 reveal a unique regulatory mechanism. Structure 2012, 20:780-790.
-
(2012)
Structure
, vol.20
, pp. 780-790
-
-
Zhang, X.1
-
63
-
-
84864486781
-
Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid
-
Gonzalez-Guzman M., et al. Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. Plant Cell 2012, 24:2483-2496.
-
(2012)
Plant Cell
, vol.24
, pp. 2483-2496
-
-
Gonzalez-Guzman, M.1
-
64
-
-
73249123581
-
The nuclear interactor PYL8/RCAR3 of Fagus sylvatica FsPP2C1 is a positive regulator of abscisic acid signaling in seeds and stress
-
Saavedra X., et al. The nuclear interactor PYL8/RCAR3 of Fagus sylvatica FsPP2C1 is a positive regulator of abscisic acid signaling in seeds and stress. Plant Physiol. 2010, 152:133-150.
-
(2010)
Plant Physiol.
, vol.152
, pp. 133-150
-
-
Saavedra, X.1
-
65
-
-
40349091686
-
An "Electronic Fluorescent Pictograph" browser for exploring and analyzing large-scale biological data sets
-
Winter D., et al. An "Electronic Fluorescent Pictograph" browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2007, 2:e718.
-
(2007)
PLoS ONE
, vol.2
-
-
Winter, D.1
-
66
-
-
13444264729
-
GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox
-
Zimmermann P., et al. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol. 2004, 136:2621-2632.
-
(2004)
Plant Physiol.
, vol.136
, pp. 2621-2632
-
-
Zimmermann, P.1
-
67
-
-
84862930411
-
A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth
-
Kim H., et al. A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth. J. Exp. Bot. 2012, 63:1013-1024.
-
(2012)
J. Exp. Bot.
, vol.63
, pp. 1013-1024
-
-
Kim, H.1
-
68
-
-
84855827848
-
Characterization of potential ABA receptors in Vitis vinifera
-
Boneh U., et al. Characterization of potential ABA receptors in Vitis vinifera. Plant Cell Rep. 2012, 31:311-321.
-
(2012)
Plant Cell Rep.
, vol.31
, pp. 311-321
-
-
Boneh, U.1
-
69
-
-
80054890183
-
A thermodynamic switch modulates abscisic acid receptor sensitivity
-
Dupeux F., et al. A thermodynamic switch modulates abscisic acid receptor sensitivity. EMBO J. 2011, 30:4171-4184.
-
(2011)
EMBO J.
, vol.30
, pp. 4171-4184
-
-
Dupeux, F.1
-
70
-
-
84862792748
-
Crystal structures of the Arabidopsis thaliana abscisic acid receptor PYL10 and its complex with abscisic acid
-
Sun D., et al. Crystal structures of the Arabidopsis thaliana abscisic acid receptor PYL10 and its complex with abscisic acid. Biochem. Biophys. Res. Commun. 2012, 418:122-127.
-
(2012)
Biochem. Biophys. Res. Commun.
, vol.418
, pp. 122-127
-
-
Sun, D.1
-
71
-
-
73849128008
-
PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis
-
Nishimura N., et al. PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J. 2010, 61:290-299.
-
(2010)
Plant J.
, vol.61
, pp. 290-299
-
-
Nishimura, N.1
-
72
-
-
0000357834
-
Water-stress-induced changes in the abscisic acid content of guard cells and other cells of Vicia faba L. leaves as determined by enzyme-amplified immunoassay
-
Harris M.J., et al. Water-stress-induced changes in the abscisic acid content of guard cells and other cells of Vicia faba L. leaves as determined by enzyme-amplified immunoassay. Proc. Natl. Acad. Sci. U.S.A. 1988, 85:2584-2588.
-
(1988)
Proc. Natl. Acad. Sci. U.S.A.
, vol.85
, pp. 2584-2588
-
-
Harris, M.J.1
-
74
-
-
0035063837
-
Relationship between changes in the guard cell abscisic-acid content and other stress-related physiological parameters in intact plants
-
Zhang S.Q., et al. Relationship between changes in the guard cell abscisic-acid content and other stress-related physiological parameters in intact plants. J. Exp. Bot. 2001, 52:301-308.
-
(2001)
J. Exp. Bot.
, vol.52
, pp. 301-308
-
-
Zhang, S.Q.1
-
75
-
-
72749102755
-
Closely related receptor complexes differ in their ABA selectivity and sensitivity
-
Szostkiewicz I., et al. Closely related receptor complexes differ in their ABA selectivity and sensitivity. Plant J. 2010, 61:25-35.
-
(2010)
Plant J.
, vol.61
, pp. 25-35
-
-
Szostkiewicz, I.1
-
76
-
-
84862932422
-
Potent and selective activation of abscisic acid receptors in vivo by mutational stabilization of their agonist-bound conformation
-
Mosquna A., et al. Potent and selective activation of abscisic acid receptors in vivo by mutational stabilization of their agonist-bound conformation. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:20838-20843.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 20838-20843
-
-
Mosquna, A.1
-
77
-
-
35348991083
-
Chemical genetic interrogation of natural variation uncovers a molecule that is glycoactivated
-
Zhao Y., et al. Chemical genetic interrogation of natural variation uncovers a molecule that is glycoactivated. Nat. Chem. Biol. 2007, 3:716-721.
-
(2007)
Nat. Chem. Biol.
, vol.3
, pp. 716-721
-
-
Zhao, Y.1
-
78
-
-
84856920194
-
Pyrabactin, an ABA agonist, induced stomatal closure and changes in signalling components of guard cells in abaxial epidermis of Pisum sativum
-
Puli M.R., Raghavendra A.S. Pyrabactin, an ABA agonist, induced stomatal closure and changes in signalling components of guard cells in abaxial epidermis of Pisum sativum. J. Exp. Bot. 2012, 63:1349-1356.
-
(2012)
J. Exp. Bot.
, vol.63
, pp. 1349-1356
-
-
Puli, M.R.1
Raghavendra, A.S.2
-
79
-
-
77956345169
-
Identification and mechanism of ABA receptor antagonism
-
Melcher K., et al. Identification and mechanism of ABA receptor antagonism. Nat. Struct. Mol. Biol. 2010, 17:1102-1108.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 1102-1108
-
-
Melcher, K.1
-
80
-
-
77956341748
-
Structural basis for selective activation of ABA receptors
-
Peterson F.C., et al. Structural basis for selective activation of ABA receptors. Nat. Struct. Mol. Biol. 2010, 17:1109-1113.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 1109-1113
-
-
Peterson, F.C.1
-
81
-
-
77956549302
-
Functional mechanism of the abscisic acid agonist pyrabactin
-
Hao Q., et al. Functional mechanism of the abscisic acid agonist pyrabactin. J. Biol. Chem. 2010, 285:28946-28952.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 28946-28952
-
-
Hao, Q.1
-
82
-
-
77956338764
-
Single amino acid alteration between valine and isoleucine determines the distinct pyrabactin selectivity by PYL1 and PYL2
-
Yuan X., et al. Single amino acid alteration between valine and isoleucine determines the distinct pyrabactin selectivity by PYL1 and PYL2. J. Biol. Chem. 2010, 285:28953-28958.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 28953-28958
-
-
Yuan, X.1
|