-
1
-
-
77949713010
-
Reaction-subdiffusion and reaction-superdiffusion equations for evanescent particles performing continuous-time random walks
-
E. Abad, S. B. Yuste, K. Lindenberg. Reaction-subdiffusion and reaction-superdiffusion equations for evanescent particles performing continuous-time random walks. Phys. Rev. E 81 (2010), 031115.
-
(2010)
Phys. Rev. e
, vol.81
, pp. 031115
-
-
Abad, E.1
Yuste, S.B.2
Lindenberg, K.3
-
3
-
-
45849150755
-
Anomalous reaction-transport processes: The dynamics beyond the law of mass action
-
D. Campos, S. Fedotov, V. Méndez. Anomalous reaction-transport processes: The dynamics beyond the law of mass action. Phys. Rev. E 77 (2008), 061130.
-
(2008)
Phys. Rev. e
, vol.77
, pp. 061130
-
-
Campos, D.1
Fedotov, S.2
Méndez, V.3
Baker, R.E.4
Yates, C.A.5
Erban, R.6
-
6
-
-
38649133288
-
Anomalous dynamics of cell migration
-
P. Dieterich, R. Klages, R. Preuss, A. Schwab. Anomalous dynamics of cell migration. PNAS J 105 (2008), 459-463.
-
(2008)
PNAS J
, vol.105
, pp. 459-463
-
-
Dieterich, P.1
Klages, R.2
Preuss, R.3
Schwab, A.4
-
7
-
-
19944408985
-
From individual to collective behaviour in bacterial chemotaxis
-
R. Erban, H. Othmer. From individual to collective behaviour in bacterial chemotaxis. SIAM J. Appl. Math. 65 (2004), No. 2, 361-391.
-
(2004)
SIAM J. Appl. Math
, vol.65
, Issue.2
, pp. 361-391
-
-
Erban, R.1
Othmer, H.2
-
8
-
-
33947227320
-
Migration and proliferation dichotomy in tumor-cell invasion
-
S. Fedotov, A. Iomin. Migration and proliferation dichotomy in tumor-cell invasion. Phys. Rev. Lett. 98 (2007), 118101.
-
(2007)
Phys. Rev. Lett
, vol.98
, pp. 118101
-
-
Fedotov, S.1
Iomin, A.2
-
9
-
-
44649183001
-
Probabilistic approach to a proliferation and migration dichotomy in tumor cell invasion
-
S. Fedotov, A. Iomin. Probabilistic approach to a proliferation and migration dichotomy in tumor cell invasion. Phys. Rev. E 77 (2008), 031911.
-
(2008)
Phys. Rev. e
, vol.77
, pp. 031911
-
-
Fedotov, S.1
Iomin, A.2
-
10
-
-
75349084049
-
Non-Markovian random walks and nonlinear reactions: Subdiffusion and propagating fronts
-
S. Fedotov. Non-Markovian random walks and nonlinear reactions: Subdiffusion and propagating fronts. Phys. Rev. E 81 (2010), 011117.
-
(2010)
Phys. Rev. e
, vol.81
, pp. 011117
-
-
Fedotov, S.1
-
11
-
-
79952532158
-
Subdiffusion chemotaxis, and anomalous aggregation
-
S. Fedotov. Subdiffusion, chemotaxis, and anomalous aggregation. Phys. Rev. E 83 (2011), 021110.
-
(2011)
Phys. Rev. e
, vol.83
, pp. 021110
-
-
Fedotov, S.1
-
12
-
-
84855271488
-
Non-Markovian models for migration-proliferation dichotomy of cancer cells: Anomalous switching and spreading rate
-
S. Fedotov, A. Iomin, L. Ryashko. Non-Markovian models for migration-proliferation dichotomy of cancer cells: Anomalous switching and spreading rate. Phys. Rev. E 84 (2011), 061131.
-
(2011)
Phys. Rev. e
, vol.84
, pp. 061131
-
-
Fedotov, S.1
Iomin, A.2
Ryashko, L.3
-
13
-
-
84859071165
-
Subdiffusive master equation with space-dependent anomalous exponent and structural instability
-
S. Fedotov, S. Falconer. Subdiffusive master equation with space-dependent anomalous exponent and structural instability Phys. Rev. E 85 (2012), 031132.
-
(2012)
Phys. Rev. e
, vol.85
, pp. 031132
-
-
Fedotov, S.1
Falconer, S.2
-
15
-
-
0033213045
-
Motile chemosensory behaviour of phagotrophic protists: Mechanisms for and efficiency in congregating at food patches
-
T. Fenchel, N. Blackburn. Motile chemosensory behaviour of phagotrophic protists: mechanisms for and efficiency in congregating at food patches. Protist 160 (1999), 325-336.
-
(1999)
Protist
, vol.160
, pp. 325-336
-
-
Fenchel, T.1
Blackburn, N.2
-
16
-
-
77952038458
-
Fractional chemotaxis diffusion equations
-
B. I. Henry, T. A. M. Langlands. Fractional chemotaxis diffusion equations. Phys. Rev. E 81 (2010), 051102.
-
(2010)
Phys. Rev. e
, vol.81
, pp. 051102
-
-
Henry, B.I.1
Langlands, T.A.M.2
-
17
-
-
33748775171
-
Anomalous diffusion with linear reaction dynamics: From continuous time random walks to fractional reaction-diffusion equations
-
B. I. Henry, T. A. M. Langlands, S. L. Wearne. Anomalous diffusion with linear reaction dynamics: From continuous time random walks to fractional reaction-diffusion equations. Phys. Rev. E 74 (2006) , 031116.
-
(2006)
Phys. Rev. e
, vol.74
, pp. 031116
-
-
Henry, B.I.1
Langlands, T.A.M.2
Wearne, S.L.3
-
18
-
-
0034917420
-
The diffusion limit of transport equations derived from velocity-jump processes
-
Th. Hillen, H. G. Othmer. The diffusion limit of transport equations derived from velocity-jump processes. SIAM J. Appl. Math. 61 (2000), No. 3, 751-775.
-
(2000)
SIAM J. Appl. Math
, vol.61
, Issue.3
, pp. 751-775
-
-
Hillen, Th.1
Othmer, H.G.2
-
19
-
-
84864567869
-
A toy model of fractal glioma development under RF electric field treatment
-
A. Iomin. A toy model of fractal glioma development under RF electric field treatment. Eur. Phys. J. E 35 (2012), 42.
-
(2012)
Eur. Phys. J. e
, vol.35
, pp. 42
-
-
Iomin, A.1
-
20
-
-
84861926585
-
Mean-field descriptions of collective migration with strong adhesion
-
S. T. Johnston, M. J. Simpson, R. E. Baker. Mean-field descriptions of collective migration with strong adhesion. Phys. Rev. E 85 (2012), 051922.
-
(2012)
Phys. Rev. e
, vol.85
, pp. 051922
-
-
Johnston, S.T.1
Simpson, M.J.2
Baker, R.E.3
-
21
-
-
49249140852
-
Composite stochastic processes
-
N. G. van Kampen. Composite stochastic processes. Physica A 96 (1979) 435-453.
-
(1979)
Physica A
, vol.96
, pp. 435-453
-
-
Van Kampen, N.G.1
-
22
-
-
79955877979
-
Collective behavior of brain tumor cells: The role of hypoxia
-
E. Khain, M. Katakowski, S. Hopkins, A. Szalad, X. Zheng, F. Jiang, M. Chopp. Collective behavior of brain tumor cells: The role of hypoxia. Phys. Rev. E 83 (2011), 031920.
-
(2011)
Phys. Rev. e
, vol.83
, pp. 031920
-
-
Khain, E.1
Katakowski, M.2
Hopkins, S.3
Szalad, A.4
Zheng, X.5
Jiang, F.6
Chopp, M.7
-
24
-
-
18144408075
-
Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach
-
R. Metzler, E. Barkai, J. Klafter. Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker-Planck equation approach. Phys. Rev. Lett. 82 (1999), 3563-3567.
-
(1999)
Phys. Rev. Lett
, vol.82
, pp. 3563-3567
-
-
Metzler, R.1
Barkai, E.2
Klafter, J.3
-
25
-
-
0002641421
-
The Random walk's guide to anomalous diffusion: A fractional dynamics approach
-
R. Metzler, J. Klafter. The Random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Reports, 339 (2000) 1-77.
-
(2000)
Phys. Reports
, vol.339
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
26
-
-
79551530752
-
Integrin α5β1 facilitates cancer cell invasion through enhanced contractile forces
-
C. T. Mierke, B. Frey, M. Fellner, M. Herrmann, B. Fabry, Integrin α5β1 facilitates cancer cell invasion through enhanced contractile forces. J. Cell Science, 124 (2011), 369-383.
-
(2011)
J. Cell Science
, vol.124
, pp. 369-383
-
-
Mierke, C.T.1
Frey, B.2
Fellner, M.3
Herrmann, M.4
Fabry, B.5
-
27
-
-
78651235537
-
-
Springer Berlin
-
V. Méndez, S. Fedotov, W. Horsthemke, Reaction-transport systems: mesoscopic foundations, fronts, and spatial instabilities. (Springer, Berlin 2010).
-
(2010)
Reaction-transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities
-
-
Méndez, V.1
Fedotov, S.2
Horsthemke, W.3
-
28
-
-
84863470701
-
Density-dependent dispersal and population aggregation patterns
-
V. Méndez, D. Campos, I. Pagonabarraga, S. Fedotov. Density-dependent dispersal and population aggregation patterns. J. Theor. Biology, 309 (2012), 113-120.
-
(2012)
J. Theor. Biology
, vol.309
, pp. 113-120
-
-
Méndez, V.1
Campos, D.2
Pagonabarraga, I.3
Fedotov, S.4
-
29
-
-
41149115511
-
Turing instability in sub-diffusive reaction-diffusion systems
-
Y. Nec, A. A. Nepomnyashchy. Turing instability in sub-diffusive reaction-diffusion systems. J. Phys. A: Math. Theor. 40 (2007), 14687.
-
(2007)
J. Phys. A: Math. Theor
, vol.40
, pp. 14687
-
-
Nec, Y.1
Nepomnyashchy, A.A.2
-
30
-
-
0023746235
-
Models of dispersal in biological systems
-
H. G. Othmer, S. R. Dunbar, W. Alt. Models of dispersal in biological systems. J. Math. Biol. 26 (1988), No. 3, 263-298.
-
(1988)
J. Math. Biol
, vol.26
, Issue.3
, pp. 263-298
-
-
Othmer, H.G.1
Dunbar, S.R.2
Alt, W.3
-
31
-
-
0031207030
-
Aggregation blow-up and collapse. The ABC's of generalized taxis
-
H. G. Othmer, A. Stevens. Aggregation, blow-up and collapse. The ABC's of generalized taxis, SIAM J. Appl. Math. 57 (1997), 1044-1081.
-
(1997)
SIAM J. Appl. Math
, vol.57
, pp. 1044-1081
-
-
Othmer, H.G.1
Stevens, A.2
-
32
-
-
79951591705
-
On a fractional linear birth-death process
-
E. Orsingher, F. Polito. On a fractional linear birth-death process. Bernoulli 17 (2011), No. 1, 114-137.
-
(2011)
Bernoulli
, vol.17
, Issue.1
, pp. 114-137
-
-
Orsingher, E.1
Polito, F.2
-
33
-
-
0344305784
-
Cell migration: Integrating signals from front to back
-
A. J. Ridley, M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons, A. R. Horwitz. Cell migration: integrating signals from front to back. Science 302 (2003), 1704-1709.
-
(2003)
Science
, vol.302
, pp. 1704-1709
-
-
Ridley, A.J.1
Schwartz, M.A.2
Burridge, K.3
Firtel, R.A.4
Ginsberg, M.H.5
Borisy, G.6
Parsons, J.T.7
Horwitz, A.R.8
-
34
-
-
41149113919
-
Reaction-subdiffusion equations for the A ⇆ B reaction
-
F. Sagues, V. P. Shkilev, I. M. Sokolov, Reaction-subdiffusion equations for the A ⇆ B reaction. Phys. Rev. E 77 (2008), 032102.
-
(2008)
Phys. Rev. e
, vol.77
, pp. 032102
-
-
Sagues, F.1
Shkilev, V.P.2
Sokolov, I.M.3
-
35
-
-
79957856726
-
Propagation of a subdiffusion reaction front and the aging of particles
-
V. P. Shkilev. Propagation of a subdiffusion reaction front and the "aging" of particles. J. Exp. Theor. Physics, 112 (2011), 711-716.
-
(2011)
J. Exp. Theor. Physics
, vol.112
, pp. 711-716
-
-
Shkilev, V.P.1
|