-
1
-
-
8444241860
-
Fast exact leave-one-out cross-validation of sparse least-squares support vector machines
-
G.C. Cawley and N.L.C. Talbot. Fast exact leave-one-out cross-validation of sparse least-squares support vector machines. Neural Networks, 17:1467-1475, 2004.
-
(2004)
Neural Networks
, vol.17
, pp. 1467-1475
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
2
-
-
34247558132
-
Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters
-
G.C. Cawley and N.L.C. Talbot. Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters. Journal of Machine Learning Research, 8:841-861, 2007.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 841-861
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
3
-
-
77956907243
-
On over-fitting in model selection and subsequent selection bias in performance evaluation
-
G.C. Cawley and N.L.C. Talbot. On over-fitting in model selection and subsequent selection bias in performance evaluation. Journal of Machine Learning Research, 11:2079-2107, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 2079-2107
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
4
-
-
84899010634
-
Model selection for support vector machines
-
MIT Press, Cambridge, MA
-
O. Chapelle and V. Vapnik. Model selection for support vector machines. In Advances in Neural Information Processing Systems 12, pages 230-236. MIT Press, Cambridge, MA, 2000.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 230-236
-
-
Chapelle, O.1
Vapnik, V.2
-
5
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46(1):131-159, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
6
-
-
67649380729
-
Probabilistic classification vector machines
-
H. Chen, P. Tino, and X. Yao. Probabilistic classification vector machines. IEEE Transactions on Neural Networks, 20(6):901-914, 2009.
-
(2009)
IEEE Transactions on Neural Networks
, vol.20
, Issue.6
, pp. 901-914
-
-
Chen, H.1
Tino, P.2
Yao, X.3
-
7
-
-
84862278427
-
On the impact of kernel approximation on learning accuracy
-
Sardinia, Italy
-
C. Cortes, M. Mohri, and A. Talwalkar. On the impact of kernel approximation on learning accuracy. In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS 2010), pages 113-120, Sardinia, Italy, 2010.
-
(2010)
Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS 2010)
, pp. 113-120
-
-
Cortes, C.1
Mohri, M.2
Talwalkar, A.3
-
8
-
-
84898956003
-
Kernel design using boosting
-
MIT Press, Cambridge, MA
-
K. Crammer, J. Keshet, and Y. Singer. Kernel design using boosting. In Advances in Neural Information Processing Systems 15, pages 553-560. MIT Press, Cambridge, MA, 2003.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 553-560
-
-
Crammer, K.1
Keshet, J.2
Singer, Y.3
-
9
-
-
0004175163
-
-
John Wiley and Sons, New York, NY
-
P.J. Davis. Circulant Matrices. John Wiley and Sons, New York, NY, 1979.
-
(1979)
Circulant Matrices
-
-
Davis, P.J.1
-
10
-
-
29644438050
-
Statistical comparisons of classi-ers over multiple data sets
-
ISSN 1532-4435
-
J. Demšar. Statistical comparisons of classi-ers over multiple data sets. Journal of Machine Learning Research, 7:1-30, 2006. ISSN 1532-4435.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
11
-
-
0037382208
-
Evaluation of simple performance measures for tuning SVM hyperparameters
-
K. Duan, S.S. Keerthi, and A.N. Poo. Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing, 51:41-59, 2003.
-
(2003)
Neurocomputing
, vol.51
, pp. 41-59
-
-
Duan, K.1
Keerthi, S.S.2
Poo, A.N.3
-
12
-
-
76749118521
-
Model selection: Beyond the Bayesian/frequentist divide
-
I. Guyon, A. Saffari, G. Dror, and G. Cawley. Model selection: Beyond the Bayesian/frequentist divide. Journal of Machine Learning Research, 11:61-87, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 61-87
-
-
Guyon, I.1
Saffari, A.2
Dror, G.3
Cawley, G.4
-
13
-
-
0003281852
-
On estimation of characters obtained in statistical procedure of recognition
-
in Russian
-
A. Luntz and V. Brailovsky. On estimation of characters obtained in statistical procedure of recognition (in Russian). Technicheskaya Kibernetica, 3, 1969.
-
(1969)
Technicheskaya Kibernetica
, pp. 3
-
-
Luntz, A.1
Brailovsky, V.2
-
15
-
-
0342502195
-
Soft margins for AdaBoost
-
G. Rätsch, T. Onoda, and K.R. Müller. Soft margins for AdaBoost. Machine Learning, 42(3): 287-320, 2001.
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Rätsch, G.1
Onoda, T.2
Müller, K.R.3
-
17
-
-
73649109867
-
Approximation of kernel matrices by circulant matrices and its application in kernel selection methods
-
G. Song and Y. Xu. Approximation of kernel matrices by circulant matrices and its application in kernel selection methods. Frontiers of mathematics in China, 5(1):123-160, 2010a.
-
(2010)
Frontiers of Mathematics in China
, vol.5
, Issue.1
, pp. 123-160
-
-
Song, G.1
Xu, Y.2
-
18
-
-
77955415830
-
Approximation of high-dimensional kernel matrices by multilevel circulant matrices
-
G. Song and Y. Xu. Approximation of high-dimensional kernel matrices by multilevel circulant matrices. Journal of Complexity, 26(4):375-405, 2010b.
-
(2010)
Journal of Complexity
, vol.26
, Issue.4
, pp. 375-405
-
-
Song, G.1
Xu, Y.2
-
19
-
-
0032638628
-
Least squares support vector machine classifiers
-
J.A.K. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural Pro- cessing Letters, 9(3):293-300, 1999.
-
(1999)
Neural Pro- Cessing Letters
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
20
-
-
3042570112
-
A unifying approach to some old and new theorems on distribution and clustering
-
E.E. Tyrtyshnikov. A unifying approach to some old and new theorems on distribution and clustering. Linear Algebra and its Applications, 232:1-43, 1996.
-
(1996)
Linear Algebra and its Applications
, vol.232
, pp. 1-43
-
-
Tyrtyshnikov, E.E.1
-
21
-
-
0242288903
-
Benchmarking least squares support vector machine classifiers
-
T. Van Gestel, J.A.K. Suykens, B. Baesens, S. Viaene, J. Vanthienen, G. Dedene, B. De Moor, and J. Vandewalle. Benchmarking least squares support vector machine classifiers. Machine Learning, 54(1):5-32, 2004.
-
(2004)
Machine Learning
, vol.54
, Issue.1
, pp. 5-32
-
-
Van Gestel, T.1
Suykens, J.A.K.2
Baesens, B.3
Viaene, S.4
Vanthienen, J.5
Dedene, G.6
Moor, B.D.7
Vandewalle, J.8
-
22
-
-
0034264380
-
Bounds on error expectation for support vector machines
-
V. Vapnik and O. Chapelle. Bounds on error expectation for support vector machines. Neural Computation, 12(9):2013-2036, 2000.
-
(2000)
Neural Computation
, vol.12
, Issue.9
, pp. 2013-2036
-
-
Vapnik, V.1
Chapelle, O.2
|