메뉴 건너뛰기




Volumn 49, Issue 5, 2013, Pages 1287-1294

Stability of linear time invariant fractional delay systems of retarded type in the space of delay parameters

Author keywords

Fractional order system; LTI systems; Retarded type systems; Stability analysis; Time delay system

Indexed keywords

FRACTIONAL-ORDER SYSTEMS; LTI SYSTEMS; STABILITY ANALYSIS; TIME-DELAY SYSTEMS; TYPE SYSTEMS;

EID: 84876693721     PISSN: 00051098     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.automatica.2013.01.041     Document Type: Article
Times cited : (31)

References (16)
  • 1
    • 74149085532 scopus 로고    scopus 로고
    • On robust stability of LTI fractional-order delay systems of retarded and neutral type
    • K. Akbari-Moornani, and M. Haeri On robust stability of LTI fractional-order delay systems of retarded and neutral type Automatica 46 2 2010 362 368
    • (2010) Automatica , vol.46 , Issue.2 , pp. 362-368
    • Akbari-Moornani, K.1    Haeri, M.2
  • 2
    • 0036642801 scopus 로고    scopus 로고
    • Analysis of fractional delay systems of retarded and neutral type
    • C. Bonnet, and J.R. Partington Analysis of fractional delay systems of retarded and neutral type Automatica 38 7 2002 1133 1138
    • (2002) Automatica , vol.38 , Issue.7 , pp. 1133-1138
    • Bonnet, C.1    Partington, J.R.2
  • 3
    • 57749209882 scopus 로고    scopus 로고
    • Stability of linear continuous-time fractional order systems with delays of the retarded type
    • M. Buslowicz Stability of linear continuous-time fractional order systems with delays of the retarded type Bulletin of the Polish Academy of Sciences: Technical Sciences 56 4 2008 319 324
    • (2008) Bulletin of the Polish Academy of Sciences: Technical Sciences , vol.56 , Issue.4 , pp. 319-324
    • Buslowicz, M.1
  • 4
    • 79251502951 scopus 로고    scopus 로고
    • An eigenvalue perturbation approach to stability analysis, part II: When will zeros of time-delay systems cross imaginary axis?
    • J. Chen, P.L. Fu, S.I. Niculescu, and Z.H. Guan An eigenvalue perturbation approach to stability analysis, part II: when will zeros of time-delay systems cross imaginary axis? SIAM Journal of Control and Optimization 48 8 2010 5583 5605
    • (2010) SIAM Journal of Control and Optimization , vol.48 , Issue.8 , pp. 5583-5605
    • Chen, J.1    Fu, P.L.2    Niculescu, S.I.3    Guan, Z.H.4
  • 5
    • 0036650867 scopus 로고    scopus 로고
    • Analytical stability bound for a class of delayed fractional-order dynamic systems
    • Y.Q. Chen, and K.L. Moore Analytical stability bound for a class of delayed fractional-order dynamic systems Nonlinear Dynamics 29 1-4 2002 191 200
    • (2002) Nonlinear Dynamics , vol.29 , Issue.14 , pp. 191-200
    • Chen, Y.Q.1    Moore, K.L.2
  • 6
    • 84867399171 scopus 로고    scopus 로고
    • A numerical method for stability windows and unstable root-locus calculation for linear fractional time-delay systems
    • A.R. Fioravanti, C. Bonnet, H. Özbay, and S.I. Niculescu A numerical method for stability windows and unstable root-locus calculation for linear fractional time-delay systems Automatica 48 11 2012 2824 2830
    • (2012) Automatica , vol.48 , Issue.11 , pp. 2824-2830
    • Fioravanti, A.R.1    Bonnet, C.2    Özbay, H.3    Niculescu, S.I.4
  • 8
    • 24944457597 scopus 로고    scopus 로고
    • A note on the use of the Lambert W function in the stability analysis of time-delay systems
    • C. Hwang, and Y.C. Cheng A note on the use of the Lambert W function in the stability analysis of time-delay systems Automatica 41 11 2005 1979 1985
    • (2005) Automatica , vol.41 , Issue.11 , pp. 1979-1985
    • Hwang, C.1    Cheng, Y.C.2
  • 9
    • 33645135087 scopus 로고    scopus 로고
    • A numerical algorithm for stability testing of fractional delay systems
    • C. Hwang, and Y.C. Cheng A numerical algorithm for stability testing of fractional delay systems Automatica 42 5 2006 825 831
    • (2006) Automatica , vol.42 , Issue.5 , pp. 825-831
    • Hwang, C.1    Cheng, Y.C.2
  • 10
    • 77953132161 scopus 로고    scopus 로고
    • Invariance properties in the root sensitivity of time-delay systems with double imaginary roots
    • E. Jarlebring, and W. Michiels Invariance properties in the root sensitivity of time-delay systems with double imaginary roots Automatica 46 6 2010 1112 1115
    • (2010) Automatica , vol.46 , Issue.6 , pp. 1112-1115
    • Jarlebring, E.1    Michiels, W.2
  • 11
    • 57549092045 scopus 로고    scopus 로고
    • An efficient numerical algorithm for stability testing of fractional-delay systems
    • F. Merrikh-Bayat, and M. Karimi-Ghartemani An efficient numerical algorithm for stability testing of fractional-delay systems ISA Transactions 48 1 2009 32 37
    • (2009) ISA Transactions , vol.48 , Issue.1 , pp. 32-37
    • Merrikh-Bayat, F.1    Karimi-Ghartemani, M.2
  • 12
    • 0036576491 scopus 로고    scopus 로고
    • An exact method for the stability analysis of time delayed LTI systems
    • N. Olgac, and R. Sipahi An exact method for the stability analysis of time delayed LTI systems IEEE Transactions on Automatic Control 47 5 2002 793 797
    • (2002) IEEE Transactions on Automatic Control , vol.47 , Issue.5 , pp. 793-797
    • Olgac, N.1    Sipahi, R.2
  • 13
    • 0022045595 scopus 로고
    • An analysis stability test for a certain class of distributed parameter systems with delays
    • N. Ozturk, and A. Uraz An analysis stability test for a certain class of distributed parameter systems with delays IEEE Transactions on Circuits and Systems 34 4 1985 393 396
    • (1985) IEEE Transactions on Circuits and Systems , vol.34 , Issue.4 , pp. 393-396
    • Ozturk, N.1    Uraz, A.2
  • 14
    • 80052028649 scopus 로고    scopus 로고
    • An effective analytical criterion for stability testing of fractional-delay systems
    • M. Shi, and Z.H. Wang An effective analytical criterion for stability testing of fractional-delay systems Automatica 47 9 2011 2001 2005
    • (2011) Automatica , vol.47 , Issue.9 , pp. 2001-2005
    • Shi, M.1    Wang, Z.H.2
  • 15
    • 0030360422 scopus 로고    scopus 로고
    • Complexity issues in robust stability of linear delay-differential systems
    • O. Toker, and H. Özbay Complexity issues in robust stability of linear delay-differential systems Mathematics of Control, Signals, and Systems 9 4 1996 386 400
    • (1996) Mathematics of Control, Signals, and Systems , vol.9 , Issue.4 , pp. 386-400
    • Toker, O.1    Özbay, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.