메뉴 건너뛰기




Volumn 4, Issue 7, 2013, Pages 619-628

Hybrid genetic algorithm for feature selection with hyperspectral data

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION ACCURACY; COMPUTATIONAL COSTS; DIGITAL AIRBORNE IMAGING SPECTROMETERS; FILTER ALGORITHM; FITNESS FUNCTIONS; HYBRID GENETIC ALGORITHMS; HYPERSPECTRAL DATA; K-NEAREST NEIGHBOUR (K-NN);

EID: 84876499341     PISSN: 2150704X     EISSN: 21507058     Source Type: Journal    
DOI: 10.1080/2150704X.2013.777485     Document Type: Article
Times cited : (17)

References (34)
  • 4
    • 0035426683 scopus 로고    scopus 로고
    • Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems
    • DOI 10.1016/S0020-0255(01)00147-5, PII S0020025501001475
    • CASILLAS, J., CORDÓN, O., DEL JESUS, M.J. and HERRERA, F., 2001, Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems. Information Science, 136, pp. 135-157. (Pubitemid 32621498)
    • (2001) Information Sciences , vol.136 , Issue.1-4 , pp. 135-157
    • Casillas, J.1    Cordon, O.2    Del Jesus, M.J.3    Herrera, F.4
  • 6
    • 34249753618 scopus 로고
    • Support-vector network
    • CORTES, C. and VAPNIK, V., 1995, Support-vector network. Machine Learning, 20, pp. 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 9
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy
    • FOODY, G.M., 2004, Thematic map comparison: evaluating the statistical significance of differences in classification accuracy. Photogrammetric Engineering and Remote Sensing, 70, pp. 627-633. (Pubitemid 39081774)
    • (2004) Photogrammetric Engineering and Remote Sensing , vol.70 , Issue.5 , pp. 627-633
    • Foody, G.M.1
  • 10
    • 4544272407 scopus 로고    scopus 로고
    • Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification
    • DOI 10.1016/j.rse.2004.06.017, PII S003442570400207X
    • FOODY, G.M. and MATHUR, A., 2004, Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification. Remote Sensing of Environment, 93, pp. 107-117. (Pubitemid 39234714)
    • (2004) Remote Sensing of Environment , vol.93 , Issue.1-2 , pp. 107-117
    • Foody, G.M.1    Mathur, A.2
  • 11
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • GUYON, I. and ELISSEEFF, A., 2003, An introduction to variable and feature selection. Journal of Machine Learning Research, 3, pp. 1157-1182.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 12
    • 65749118650 scopus 로고    scopus 로고
    • Recent advances in memetic algorithms
    • W.E. Hart, N. Krasnogor and J.E. Smith (Eds.), (Berlin: Springer)
    • HART, W.E., SMITH, J.E. and KRASNOGOR, N., 2005, Recent advances in memetic algorithms. In Studies in Fuzziness and Soft Computing, W.E. Hart, N. Krasnogor and J.E. Smith (Eds.), Vol. 166 (Berlin: Springer).
    • (2005) Studies in Fuzziness and Soft Computing , vol.166
    • Hart, W.E.1    Smith, J.E.2    Krasnogor, N.3
  • 15
    • 77957741951 scopus 로고
    • On themean accuracy of statistical pattern recognizers
    • HUGHES, G.F., 1968, On themean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory, IT-14, pp. 55-63.
    • (1968) IEEE Transactions on Information Theory, IT , vol.14 , pp. 55-63
    • Hughes, G.F.1
  • 16
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: evaluation, application, and small sample performance
    • JAIN, A. and ZONGKER, D., 1997, Feature selection: evaluation, application, and small sample performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, pp. 153-158. (Pubitemid 127828334)
    • (1997) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.1
  • 17
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • KOHAVI, R. and JOHN, G.H., 1997, Wrappers for feature subset selection. Artificial Intelligence, 97, pp. 273-324. (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 18
    • 84992726552 scopus 로고
    • Estimating attributes: Analysis and extensions of RELIEF
    • F. Bergadano and L.D. Raedt (Eds.), (Berlin: Springer
    • KONONENKO, I., 1994, Estimating attributes: analysis and extensions of RELIEF. In European Conference on Machine Learning, F. Bergadano and L.D. Raedt (Eds.), pp. 171-182 (Berlin: Springer).
    • (1994) European Conference on Machine Learning , pp. 171-182
    • Kononenko, I.1
  • 19
    • 77957990796 scopus 로고    scopus 로고
    • An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine
    • LI, S., WU, H., WAN, D. and ZHU, J., 2011, An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine. Knowledge-Based Systems, 24, pp. 40-48.
    • (2011) Knowledge-Based Systems , vol.24 , pp. 40-48
    • Li, S.1    Wu, H.2    Wan, D.3    Zhu, J.4
  • 20
    • 77955454823 scopus 로고    scopus 로고
    • Available online at, (accessed 5 December 2012)
    • LUKE, S., 2009, Essentials of Metaheuristics. Available online at http://cs.gmu.edu/~sean/book/metaheuristics/(accessed 5 December 2012).
    • (2009) Essentials of Metaheuristics
    • Luke, S.1
  • 21
    • 0242655516 scopus 로고    scopus 로고
    • A gentle introduction to memetic algorithms
    • F. Glover andG.A. Kochenberger (Eds.), (Boston, MA: Kluwer)
    • MOSCATO, P. and COTTA, C., 2003, A gentle introduction to memetic algorithms. In Handbook of Metaheuristics, F. Glover andG.A. Kochenberger (Eds.), pp. 105-144 (Boston, MA: Kluwer).
    • (2003) Handbook of Metaheuristics , pp. 105-144
    • Moscato, P.1    Cotta, C.2
  • 22
    • 33747119337 scopus 로고    scopus 로고
    • Support vector machine-based feature selection for land cover classification: A case study with DAIS hyperspectral data
    • DOI 10.1080/01431160500242515, PII H665446622546V11
    • PAL, M., 2006, Support vector machine-based feature selection for land cover classification: a case study with DAIS hyperspectral data. International Journal of Remote Sensing, 27, pp. 2877-2894. (Pubitemid 44219161)
    • (2006) International Journal of Remote Sensing , vol.27 , Issue.14 , pp. 2877-2894
    • Pal, M.1
  • 24
    • 82155179334 scopus 로고    scopus 로고
    • Modified nearest neighbour classifier for hyperspectral data classification
    • PAL, M., 2011, Modified nearest neighbour classifier for hyperspectral data classification. International Journal of Remote Sensing, 32, pp. 9207-9217.
    • (2011) International Journal of Remote Sensing , vol.32 , pp. 9207-9217
    • Pal, M.1
  • 26
    • 77951295936 scopus 로고    scopus 로고
    • Feature selection for classification of hyperspectral data by SVM
    • PAL, M. and FOODY, G.M., 2010, Feature selection for classification of hyperspectral data by SVM. IEEE Transactions on Geoscience and Remote Sensing, 48, pp. 2297-2306.
    • (2010) IEEE Transactions on Geoscience and Remote Sensing , vol.48 , pp. 2297-2306
    • Pal, M.1    Foody, G.M.2
  • 28
    • 0001850037 scopus 로고    scopus 로고
    • Modelling the dynamics of a steady-state genetic algorithm
    • W. Banzhaf and C. R. Reeves (Eds.), (San Francisco, CA: Morgan Kaufmann)
    • ROGERS, A. and PRUGEL-BENNETT, A., 1999, Modelling the dynamics of a steady-state genetic algorithm. In Proceeding of Foundation of Genetic Algorithms, W. Banzhaf and C. R. Reeves (Eds.), pp. 57-68 (San Francisco, CA: Morgan Kaufmann).
    • (1999) Proceeding of Foundation of Genetic Algorithms , pp. 57-68
    • Rogers, A.1    Prugel-bennett, A.2
  • 29
    • 0035391615 scopus 로고    scopus 로고
    • A new search algorithm for feature selection in hyperspectral remote sensing images
    • DOI 10.1109/36.934069, PII S0196289201054997
    • SERPICO, S.B. and BRUZZONE, L., 2001, A new search algorithm for feature selection in hyperspectral remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 39, pp. 1360-1367. (Pubitemid 32732652)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.7 , pp. 1360-1367
    • Serpico, S.B.1    Bruzzone, L.2
  • 31
    • 0032028297 scopus 로고    scopus 로고
    • Feature subset selection using a genetic algorithm
    • YANG, J. and HONAVAR, V., 1998, Feature subset selection using a genetic algorithm. IEEE Intelligent Systems, 13, pp. 44-49.
    • (1998) IEEE Intelligent Systems , vol.13 , pp. 44-49
    • Yang, J.1    Honavar, V.2
  • 32
    • 0036132565 scopus 로고    scopus 로고
    • Genetic feature selection combined with composite fuzzy nearest neighbor classifiers for hyperspectral satellite imagery
    • DOI 10.1016/S0167-8655(01)00118-0, PII S0167865501001180
    • YU, S., DE BACKER, S. and SCHEUNDERS, P., 2002, Genetic feature selection combined with composite fuzzy nearest neighbor classifiers for hyperspectral satellite imagery. Pattern Recognition Letters, 23, pp. 183-190. (Pubitemid 33119511)
    • (2002) Pattern Recognition Letters , vol.23 , Issue.1-3 , pp. 183-190
    • Yu, S.1    De Backer, S.2    Scheunders, P.3
  • 34
    • 33847646332 scopus 로고    scopus 로고
    • Wrapper-filter feature selection algorithm using a memetic framework
    • DOI 10.1109/TSMCB.2006.883267, Special Issue on Memetic Algorithms
    • ZHU, Z., ONG, Y.S. and DASH, M., 2007, Wrapper-filter feature selection algorithm using a memetic framework. IEEE Transactions on Systems, Man and Cybernetics - Part B, 37, pp. 70-76. (Pubitemid 46358481)
    • (2007) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , vol.37 , Issue.1 , pp. 70-76
    • Zhu, Z.1    Ong, Y.-S.2    Dash, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.