-
1
-
-
80052418039
-
Robustness of filter-based feature ranking: A case study
-
18-20 May, Palm Beach, FL (Palo Alto, CA: AAAI Press)
-
ALTIDOR, W., KHOSHGOFTAAR, T.M. and HULSE, J.V, 2011, Robustness of filter-based feature ranking: a case study. In Proceedings of 24th Florida Artificial Intelligence Research Society Conference (FLAIRS-24), 18-20 May, Palm Beach, FL (Palo Alto, CA: AAAI Press), pp. 453-458.
-
(2011)
Proceedings of 24th Florida Artificial Intelligence Research Society Conference FLAIRS
, vol.24
, pp. 453-458
-
-
Altidor, W.1
Khoshgoftaar, T.M.2
Hulse, J.V.3
-
2
-
-
4143064738
-
Methodology for hyperspectral band selection
-
BAJCSY, P. and GROVES, P., 2004, Methodology for hyperspectral band selection. Photogrammetric Engineering and Remote Sensing, 70, pp. 793-802. (Pubitemid 39081750)
-
(2004)
Photogrammetric Engineering and Remote Sensing
, vol.70
, Issue.7
, pp. 793-802
-
-
Bajcsy, P.1
Groves, P.2
-
3
-
-
0026966646
-
Training algorithm for optimal margin classifiers
-
D. Haussler (Ed.), (Pittsburgh, PA: ACM Press)
-
BOSER, B.E., GUYON, I.M. and VAPNIK, V.N., 1992, Training algorithm for optimal margin classifiers. In Proceedings of the 5th Annual Workshop on Computational Learning Theory, D. Haussler (Ed.), pp. 144-152 (Pittsburgh, PA: ACM Press).
-
(1992)
Proceedings of the 5th Annual Workshop on Computational Learning Theory
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
4
-
-
0035426683
-
Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems
-
DOI 10.1016/S0020-0255(01)00147-5, PII S0020025501001475
-
CASILLAS, J., CORDÓN, O., DEL JESUS, M.J. and HERRERA, F., 2001, Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems. Information Science, 136, pp. 135-157. (Pubitemid 32621498)
-
(2001)
Information Sciences
, vol.136
, Issue.1-4
, pp. 135-157
-
-
Casillas, J.1
Cordon, O.2
Del Jesus, M.J.3
Herrera, F.4
-
6
-
-
34249753618
-
Support-vector network
-
CORTES, C. and VAPNIK, V., 1995, Support-vector network. Machine Learning, 20, pp. 273-297.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
7
-
-
84942213019
-
The best two independent measurements are not the two best
-
COVER, T.M., 1974, The best two independent measurements are not the two best. IEEE Transactions on Systems, Man, and Cybernetics, SMC-4, pp. 116-117.
-
(1974)
IEEE Transactions on Systems, Man, and Cybernetics, SMC
, vol.4
, pp. 116-117
-
-
Cover, T.M.1
-
8
-
-
0013326060
-
Feature selection for classification
-
DASH, M. and LIU, H., 1997, Feature selection for classification. Intelligent Data Analysis: An International Journal, 1, pp. 131-156.
-
(1997)
Intelligent Data Analysis: An International Journal
, vol.1
, pp. 131-156
-
-
Dash, M.1
Liu, H.2
-
9
-
-
3042661357
-
Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy
-
FOODY, G.M., 2004, Thematic map comparison: evaluating the statistical significance of differences in classification accuracy. Photogrammetric Engineering and Remote Sensing, 70, pp. 627-633. (Pubitemid 39081774)
-
(2004)
Photogrammetric Engineering and Remote Sensing
, vol.70
, Issue.5
, pp. 627-633
-
-
Foody, G.M.1
-
10
-
-
4544272407
-
Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification
-
DOI 10.1016/j.rse.2004.06.017, PII S003442570400207X
-
FOODY, G.M. and MATHUR, A., 2004, Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification. Remote Sensing of Environment, 93, pp. 107-117. (Pubitemid 39234714)
-
(2004)
Remote Sensing of Environment
, vol.93
, Issue.1-2
, pp. 107-117
-
-
Foody, G.M.1
Mathur, A.2
-
11
-
-
33745561205
-
An introduction to variable and feature selection
-
GUYON, I. and ELISSEEFF, A., 2003, An introduction to variable and feature selection. Journal of Machine Learning Research, 3, pp. 1157-1182.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
12
-
-
65749118650
-
Recent advances in memetic algorithms
-
W.E. Hart, N. Krasnogor and J.E. Smith (Eds.), (Berlin: Springer)
-
HART, W.E., SMITH, J.E. and KRASNOGOR, N., 2005, Recent advances in memetic algorithms. In Studies in Fuzziness and Soft Computing, W.E. Hart, N. Krasnogor and J.E. Smith (Eds.), Vol. 166 (Berlin: Springer).
-
(2005)
Studies in Fuzziness and Soft Computing
, vol.166
-
-
Hart, W.E.1
Smith, J.E.2
Krasnogor, N.3
-
13
-
-
0030164799
-
Discriminant adaptive nearest neighbour classification
-
HASTIE, T. and TIBSHIRANI, R., 1996, Discriminant adaptive nearest neighbour classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18, pp. 607-615.
-
(1996)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.18
, pp. 607-615
-
-
Hastie, T.1
Tibshirani, R.2
-
14
-
-
0003684449
-
-
New York, NY: Springer
-
HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J., 2009, The Elements of Statistical Learning - Data Mining, Inference, and Prediction (New York, NY: Springer).
-
(2009)
The Elements of Statistical Learning - Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
15
-
-
77957741951
-
On themean accuracy of statistical pattern recognizers
-
HUGHES, G.F., 1968, On themean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory, IT-14, pp. 55-63.
-
(1968)
IEEE Transactions on Information Theory, IT
, vol.14
, pp. 55-63
-
-
Hughes, G.F.1
-
16
-
-
0031078007
-
Feature selection: evaluation, application, and small sample performance
-
JAIN, A. and ZONGKER, D., 1997, Feature selection: evaluation, application, and small sample performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, pp. 153-158. (Pubitemid 127828334)
-
(1997)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.19
, Issue.2
, pp. 153-158
-
-
Jain, A.1
-
17
-
-
0031381525
-
Wrappers for feature subset selection
-
PII S000437029700043X
-
KOHAVI, R. and JOHN, G.H., 1997, Wrappers for feature subset selection. Artificial Intelligence, 97, pp. 273-324. (Pubitemid 127401107)
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
18
-
-
84992726552
-
Estimating attributes: Analysis and extensions of RELIEF
-
F. Bergadano and L.D. Raedt (Eds.), (Berlin: Springer
-
KONONENKO, I., 1994, Estimating attributes: analysis and extensions of RELIEF. In European Conference on Machine Learning, F. Bergadano and L.D. Raedt (Eds.), pp. 171-182 (Berlin: Springer).
-
(1994)
European Conference on Machine Learning
, pp. 171-182
-
-
Kononenko, I.1
-
19
-
-
77957990796
-
An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine
-
LI, S., WU, H., WAN, D. and ZHU, J., 2011, An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine. Knowledge-Based Systems, 24, pp. 40-48.
-
(2011)
Knowledge-Based Systems
, vol.24
, pp. 40-48
-
-
Li, S.1
Wu, H.2
Wan, D.3
Zhu, J.4
-
20
-
-
77955454823
-
-
Available online at, (accessed 5 December 2012)
-
LUKE, S., 2009, Essentials of Metaheuristics. Available online at http://cs.gmu.edu/~sean/book/metaheuristics/(accessed 5 December 2012).
-
(2009)
Essentials of Metaheuristics
-
-
Luke, S.1
-
21
-
-
0242655516
-
A gentle introduction to memetic algorithms
-
F. Glover andG.A. Kochenberger (Eds.), (Boston, MA: Kluwer)
-
MOSCATO, P. and COTTA, C., 2003, A gentle introduction to memetic algorithms. In Handbook of Metaheuristics, F. Glover andG.A. Kochenberger (Eds.), pp. 105-144 (Boston, MA: Kluwer).
-
(2003)
Handbook of Metaheuristics
, pp. 105-144
-
-
Moscato, P.1
Cotta, C.2
-
22
-
-
33747119337
-
Support vector machine-based feature selection for land cover classification: A case study with DAIS hyperspectral data
-
DOI 10.1080/01431160500242515, PII H665446622546V11
-
PAL, M., 2006, Support vector machine-based feature selection for land cover classification: a case study with DAIS hyperspectral data. International Journal of Remote Sensing, 27, pp. 2877-2894. (Pubitemid 44219161)
-
(2006)
International Journal of Remote Sensing
, vol.27
, Issue.14
, pp. 2877-2894
-
-
Pal, M.1
-
24
-
-
82155179334
-
Modified nearest neighbour classifier for hyperspectral data classification
-
PAL, M., 2011, Modified nearest neighbour classifier for hyperspectral data classification. International Journal of Remote Sensing, 32, pp. 9207-9217.
-
(2011)
International Journal of Remote Sensing
, vol.32
, pp. 9207-9217
-
-
Pal, M.1
-
26
-
-
77951295936
-
Feature selection for classification of hyperspectral data by SVM
-
PAL, M. and FOODY, G.M., 2010, Feature selection for classification of hyperspectral data by SVM. IEEE Transactions on Geoscience and Remote Sensing, 48, pp. 2297-2306.
-
(2010)
IEEE Transactions on Geoscience and Remote Sensing
, vol.48
, pp. 2297-2306
-
-
Pal, M.1
Foody, G.M.2
-
28
-
-
0001850037
-
Modelling the dynamics of a steady-state genetic algorithm
-
W. Banzhaf and C. R. Reeves (Eds.), (San Francisco, CA: Morgan Kaufmann)
-
ROGERS, A. and PRUGEL-BENNETT, A., 1999, Modelling the dynamics of a steady-state genetic algorithm. In Proceeding of Foundation of Genetic Algorithms, W. Banzhaf and C. R. Reeves (Eds.), pp. 57-68 (San Francisco, CA: Morgan Kaufmann).
-
(1999)
Proceeding of Foundation of Genetic Algorithms
, pp. 57-68
-
-
Rogers, A.1
Prugel-bennett, A.2
-
29
-
-
0035391615
-
A new search algorithm for feature selection in hyperspectral remote sensing images
-
DOI 10.1109/36.934069, PII S0196289201054997
-
SERPICO, S.B. and BRUZZONE, L., 2001, A new search algorithm for feature selection in hyperspectral remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 39, pp. 1360-1367. (Pubitemid 32732652)
-
(2001)
IEEE Transactions on Geoscience and Remote Sensing
, vol.39
, Issue.7
, pp. 1360-1367
-
-
Serpico, S.B.1
Bruzzone, L.2
-
31
-
-
0032028297
-
Feature subset selection using a genetic algorithm
-
YANG, J. and HONAVAR, V., 1998, Feature subset selection using a genetic algorithm. IEEE Intelligent Systems, 13, pp. 44-49.
-
(1998)
IEEE Intelligent Systems
, vol.13
, pp. 44-49
-
-
Yang, J.1
Honavar, V.2
-
32
-
-
0036132565
-
Genetic feature selection combined with composite fuzzy nearest neighbor classifiers for hyperspectral satellite imagery
-
DOI 10.1016/S0167-8655(01)00118-0, PII S0167865501001180
-
YU, S., DE BACKER, S. and SCHEUNDERS, P., 2002, Genetic feature selection combined with composite fuzzy nearest neighbor classifiers for hyperspectral satellite imagery. Pattern Recognition Letters, 23, pp. 183-190. (Pubitemid 33119511)
-
(2002)
Pattern Recognition Letters
, vol.23
, Issue.1-3
, pp. 183-190
-
-
Yu, S.1
De Backer, S.2
Scheunders, P.3
-
33
-
-
77951263213
-
Towards a memetic feature selection paradigm
-
ZHU, Z., JIA, S. and JI, Z., 2010, Towards a memetic feature selection paradigm. IEEE Computational Intelligence Magazine, 5, pp. 41-53.
-
(2010)
IEEE Computational Intelligence Magazine
, vol.5
, pp. 41-53
-
-
Zhu, Z.1
Jia, S.2
Ji, Z.3
-
34
-
-
33847646332
-
Wrapper-filter feature selection algorithm using a memetic framework
-
DOI 10.1109/TSMCB.2006.883267, Special Issue on Memetic Algorithms
-
ZHU, Z., ONG, Y.S. and DASH, M., 2007, Wrapper-filter feature selection algorithm using a memetic framework. IEEE Transactions on Systems, Man and Cybernetics - Part B, 37, pp. 70-76. (Pubitemid 46358481)
-
(2007)
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
, vol.37
, Issue.1
, pp. 70-76
-
-
Zhu, Z.1
Ong, Y.-S.2
Dash, M.3
|