-
1
-
-
39249084077
-
-
A. Görlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L. Gustavson, J. R. Abo-Shaeer, A. P. Chikkatur, S. Gupta, S. Inouye, T. P. Rosenband, D. E. Pritchard, and W. Ketterle, Phys. Rev. Lett. 87, 130402 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 130402
-
-
Görlitz, A.1
Vogels, J.M.2
Leanhardt, A.E.3
Raman, C.4
Gustavson, T.L.5
Abo-Shaeer, J.R.6
Chikkatur, A.P.7
Gupta, S.8
Inouye, S.9
Rosenband, T.P.10
Pritchard, D.E.11
Ketterle, W.12
-
2
-
-
0035920760
-
-
F. Schreck, L. Khaykovich, K. L. Corwin, G. Ferrari, T. Bourdel, J. Cubizolles, and C. Salomon, Phys. Rev. Lett. 87, 080403 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 80403
-
-
Schreck, F.1
Khaykovich, L.2
Corwin, K.L.3
Ferrari, G.4
Bourdel, T.5
Cubizolles, J.6
Salomon, C.7
-
5
-
-
0034694429
-
-
Y. Castin, R. Dum, E. Mandonnet, A. Minguzzi, and I. Carusotto, J. Mod. Opt. 47, 2671 (2000).
-
(2000)
J. Mod. Opt.
, vol.47
, pp. 2671
-
-
Castin, Y.1
Dum, R.2
Mandonnet, E.3
Minguzzi, A.4
Carusotto, I.5
-
7
-
-
6144245310
-
-
Functional Integrals in Quantum Field Theory and Statistical Physics (Reidel, Dordrecht, 1983), Chap. 6
-
V. N. Popov, Theor. Math. Phys. 11, 565 (1972);Functional Integrals in Quantum Field Theory and Statistical Physics (Reidel, Dordrecht, 1983), Chap. 6.
-
(1972)
Theor. Math. Phys.
, vol.11
, pp. 565
-
-
Popov, V.N.1
-
11
-
-
37649030128
-
-
S. Dettmer, D. Hellweg, P. Ryytty, J. J. Arlt, W. Ertmer, K. Sengstock, D. S. Petrov, and G. V. Shlyapnikov, Phys. Rev. Lett. 87, 160406 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 160406
-
-
Dettmer, S.1
Hellweg, D.2
Ryytty, P.3
Arlt, J.J.4
Ertmer, W.5
Sengstock, K.6
Petrov, D.S.7
Shlyapnikov, G.V.8
-
12
-
-
85037250241
-
-
F. Gerbier, S. Richard, J. H. Thywissen, M. Hugbart, P. Bouyer, and A. Aspect, e-print cond-mat/0210206.
-
-
-
Gerbier, F.1
Richard, S.2
Thywissen, J.H.3
Hugbart, M.4
Bouyer, P.5
Aspect, A.6
-
17
-
-
85037179213
-
-
D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1995), Chap. 28
-
D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1995), Chap. 28.
-
-
-
-
21
-
-
0036655463
-
-
U. Al Khawaja, J. O. Andersen, N. P. Proukakis, and H. T. C. Stoof, Phys. Rev. A 66, 013615 (2002).
-
(2002)
Phys. Rev. A
, vol.66
, pp. 13615
-
-
Al Khawaja, U.1
Andersen, J.O.2
Proukakis, N.P.3
Stoof, H.T.C.4
-
22
-
-
0036877313
-
-
U. Al Khawaja, J. O. Andersen, N. P. Proukakis, and H. T. C. Stoof, Phys. Rev. A 66, 059902 (2002).
-
(2002)
Phys. Rev. A
, vol.66
, pp. 59902
-
-
Al Khawaja, U.1
Andersen, J.O.2
Proukakis, N.P.3
Stoof, H.T.C.4
-
24
-
-
85037202299
-
-
This can be seen by taking the derivative of Eq. (11) with respect to (Formula presented)
-
This can be seen by taking the derivative of Eq. (11) with respect to (Formula presented)
-
-
-
-
25
-
-
85037210354
-
-
We note that the same problem of course arises in the continuous version of the theory; in the above reasoning one has to replace (Formula presented) by the integral of (Formula presented) over a finite volume around the point (Formula presented)
-
We note that the same problem of course arises in the continuous version of the theory; in the above reasoning one has to replace (Formula presented) by the integral of (Formula presented) over a finite volume around the point (Formula presented)
-
-
-
-
29
-
-
85037231032
-
-
M. Gaudin, La Fonction d’Onde de Bethe (Masson, Paris, 1983)
-
M. Gaudin, La Fonction d’Onde de Bethe (Masson, Paris, 1983).
-
-
-
-
36
-
-
85037226928
-
-
We have used the identity (Formula presented) where the cosine-integral function (Formula presented) tends to zero in the limit (Formula presented)
-
We have used the identity (Formula presented) where the cosine-integral function (Formula presented) tends to zero in the limit (Formula presented)
-
-
-
-
38
-
-
85037223526
-
-
The trick is to use the rewriting (Formula presented) where (Formula presented) and (Formula presented) It is then clear that (Formula presented) can be extended to the domain (Formula presented) to form an even (Formula presented) function of k since one can extend (Formula presented) as an odd (Formula presented) function of k
-
The trick is to use the rewriting (Formula presented) where (Formula presented) and (Formula presented) It is then clear that (Formula presented) can be extended to the domain (Formula presented) to form an even (Formula presented) function of k since one can extend (Formula presented) as an odd (Formula presented) function of k.
-
-
-
|