메뉴 건너뛰기




Volumn 1, Issue , 2012, Pages 562-566

Investigation on dimensionality reduction of concatenated features with deep neural network for LVCSR systems

Author keywords

Bottleneck features; Deep neural networks; Dimensionality reduction; Large vocabulary continuous speech recognition

Indexed keywords

BOTTLENECK FEATURES; DEEP NEURAL NETWORKS; DIMENSIONALITY REDUCTION; DIMENSIONALITY REDUCTION TECHNIQUES; HIGH-DIMENSIONAL FEATURES; LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION; LOW-DIMENSIONAL REPRESENTATION; RECOGNITION PERFORMANCE;

EID: 84876477729     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICoSP.2012.6491550     Document Type: Conference Paper
Times cited : (25)

References (12)
  • 2
    • 84865801985 scopus 로고    scopus 로고
    • Conversational speech transcription using context-dependent deep neural networks
    • F. Seide, G. Li, and D. Yu, "Conversational speech transcription using context-dependent deep neural networks," in Interspeech, 2011, pp. 437- 440.
    • (2011) Interspeech , pp. 437-440
    • Seide, F.1    Li, G.2    Yu, D.3
  • 4
    • 84874485803 scopus 로고    scopus 로고
    • Investigation of deep neural networks (DNN) for large vocabulary continuous speech recognition: Why DNN surpasses gmms in acoustic modeling
    • unpublished
    • Jia Pan, Cong Liu, Zhiguo Wang, Yu Hu, Hui Jiang, "Investigation of Deep Neural Networks (DNN) for Large Vocabulary Continuous Speech Recognition: Why DNN Surpasses GMMs in Acoustic Modeling," ISCSLP2012, unpublished.
    • ISCSLP 2012
    • Pan, J.1    Liu, C.2    Wang, Z.3    Hu, Y.4    Jiang, H.5
  • 6
    • 84858976070 scopus 로고    scopus 로고
    • Feature engineering in context-dependent deep neural networks for conversational speech transcription
    • F. Seide, G. Li, X. Chen and D. Yu, "Feature Engineering in Context-Dependent Deep Neural Networks for Conversational Speech Transcription," Proc. ASRU 2011, pp. 24-29, 2011.
    • (2011) Proc. ASRU 2011 , pp. 24-29
    • Seide, F.1    Li, G.2    Chen, X.3    Yu, D.4
  • 7
    • 84867606668 scopus 로고    scopus 로고
    • Exploiting sparseness in deep neural networks for large vocabulary speech recognition
    • D. Yu, F. Seide, G. Li, L. Deng, "Exploiting sparseness in deep neural networks for large vocabulary speech recognition," in Proc. ICASSP 2012, pp. 4409-4412, 2012.
    • (2012) Proc. ICASSP 2012 , pp. 4409-4412
    • Yu, D.1    Seide, F.2    Li, G.3    Deng, L.4
  • 8
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 9
    • 78049401068 scopus 로고    scopus 로고
    • Dimensionality reduction methods for HMM phonetic recognition
    • Hongbing Hu, Stephen A. Zahorian, "Dimensionality reduction methods for HMM phonetic recognition," in Proc. ICASSP 2010, pp. 4854-4857, 2010.
    • (2010) Proc. ICASSP 2010 , pp. 4854-4857
    • Hu, H.1    Zahorian, S.A.2
  • 10
    • 84865785753 scopus 로고    scopus 로고
    • Improved bottleneck features using pretrained deep neural networks
    • D. Yu and M. L. Seltzer, "Improved Bottleneck Features Using Pretrained Deep Neural Networks," in Proc. Interspeech 2011, pp. 237-240, 2011.
    • (2011) Proc. Interspeech 2011 , pp. 237-240
    • Yu, D.1    Seltzer, M.L.2
  • 11
    • 79959749004 scopus 로고    scopus 로고
    • Dimension reduction with principal component analysis applied to speech supervectors
    • V. Peter, P. Matus, J. Jozef, "Dimension reduction with principal component analysis applied to speech supervectors," Journal of Electrical and Electronics Engineering, vol. 4, no. 1, pp. 245-250, 2011.
    • (2011) Journal of Electrical and Electronics Engineering , vol.4 , Issue.1 , pp. 245-250
    • Peter, V.1    Matus, P.2    Jozef, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.