메뉴 건너뛰기




Volumn 24, Issue 6, 2012, Pages 355-358

Growth curve mixture models

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84876354511     PISSN: 10020829     EISSN: None     Source Type: Journal    
DOI: 10.3969/j.issn.1002-0829.2012.06.009     Document Type: Article
Times cited : (10)

References (17)
  • 1
    • 62149114432 scopus 로고    scopus 로고
    • Differential efficacy of escitalopram and nortriptyline on dimensional measures of depression
    • Uher R, Maier W, Hauser J, Marusic A, Schmael C, Mors O, et al. Differential efficacy of escitalopram and nortriptyline on dimensional measures of depression. Br J Psychiatry 2009; 194(3): 252-259.
    • (2009) Br J Psychiatry , vol.194 , Issue.3 , pp. 252-259
    • Uher, R.1    Maier, W.2    Hauser, J.3    Marusic, A.4    Schmael, C.5    Mors, O.6
  • 2
    • 77957151650 scopus 로고    scopus 로고
    • Trajectories of change in depression severity during treatment with antidepressants
    • Uher R, Muthen B, Souery D, Mors O, Jaracz J, Placentino A, et al. Trajectories of change in depression severity during treatment with antidepressants. Psychol Med 2010; 40(8): 1367-1377.
    • (2010) Psychol Med , vol.40 , Issue.8 , pp. 1367-1377
    • Uher, R.1    Muthen, B.2    Souery, D.3    Mors, O.4    Jaracz, J.5    Placentino, A.6
  • 3
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird N, Ware J. Random-effects models for longitudinal data. Biometrics 1982; 38: 963-974.
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.1    Ware, J.2
  • 5
    • 0033636097 scopus 로고    scopus 로고
    • Latent class model diagnosis
    • Garrett E S, Zeger S L. Latent class model diagnosis. Biometrics 2000; 56: 1055-1067.
    • (2000) Biometrics , vol.56 , pp. 1055-1067
    • Garrett, E.S.1    Zeger, S.L.2
  • 6
    • 84995346800 scopus 로고    scopus 로고
    • Growth mixture modeling: Analysis with non-Gaussian random effects
    • Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G, eds. Boca Raton: Chapman Hall/CRC Press
    • Muthén B, Asparouhov T. Growth mixture modeling: Analysis with non-Gaussian random effects. In: Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G, eds. Longitudinal Data Analysis. Boca Raton: Chapman Hall/CRC Press, 2008:143-165.
    • (2008) Longitudinal Data Analysis , pp. 143-165
    • Muthén, B.1    Asparouhov, T.2
  • 7
    • 84876378106 scopus 로고    scopus 로고
    • Latent variable modeling
    • Cai L. Latent variable modeling. Shanghai Arch Psychiatry 2012; 24(2): 118-120.
    • (2012) Shanghai Arch Psychiatry , vol.24 , Issue.2 , pp. 118-120
    • Cai, L.1
  • 8
    • 0009852669 scopus 로고    scopus 로고
    • General growth mixture modeling for randomized preventive interventions
    • Muthén B, Brown C H, Masyn K, Jo B, Khoo S T, Yang C C, et al. General growth mixture modeling for randomized preventive interventions. Biostatistics 2002; 3(4): 459-475.
    • (2002) Biostatistics , vol.3 , Issue.4 , pp. 459-475
    • Muthén, B.1    Brown, C.H.2    Masyn, K.3    Jo, B.4    Khoo, S.T.5    Yang, C.C.6
  • 9
    • 0032969449 scopus 로고    scopus 로고
    • Finite mixture modeling with mixture outcomes using the EM algorithm
    • Muthén B, Shedden K. Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics 1999; 55: 463-469.
    • (1999) Biometrics , vol.55 , pp. 463-469
    • Muthén, B.1    Shedden, K.2
  • 10
    • 21644459666 scopus 로고    scopus 로고
    • Using a Bayesian latent growth curve model to identify trajectories of positive affect and negative events following myocardial infarction
    • Elliott M R, Gallo J J, Ten Have T R, Bogner H R, Katz I R. Using a Bayesian latent growth curve model to identify trajectories of positive affect and negative events following myocardial infarction. Biostatistics 2005; 6:119-143.
    • (2005) Biostatistics , vol.6 , pp. 119-143
    • Elliott, M.R.1    Gallo, J.J.2    Ten Have, T.R.3    Bogner, H.R.4    Katz, I.R.5
  • 11
    • 68849114154 scopus 로고    scopus 로고
    • Identification of multivariate responders/non-responders using Bayesian growth curve latent class models
    • Leiby B E, Sammel M D, Ten Have T R, Lynch K G. Identification of multivariate responders/non-responders using Bayesian growth curve latent class models. J R Stat Soc Ser C Appl Stat 2009; 58: 505-524.
    • (2009) J R Stat Soc Ser C Appl Stat , vol.58 , pp. 505-524
    • Leiby, B.E.1    Sammel, M.D.2    Ten Have, T.R.3    Lynch, K.G.4
  • 12
    • 0036489045 scopus 로고    scopus 로고
    • Latent class models for joint analysis of longitudinal biomarker and event process data
    • Lin H, Turnbull B, McCulloch C, Slate E. Latent class models for joint analysis of longitudinal biomarker and event process data. J Am Stat Assoc 2002; 97: 53-65.
    • (2002) J Am Stat Assoc , vol.97 , pp. 53-65
    • Lin, H.1    Turnbull, B.2    McCulloch, C.3    Slate, E.4
  • 13
    • 65949121222 scopus 로고    scopus 로고
    • An introduction to latent class growth analysis and growth mixture modeling
    • Jung T, Wickrama K. An introduction to latent class growth analysis and growth mixture modeling. Soc Personal Psychol Compass 2008; 2: 302-317.
    • (2008) Soc Personal Psychol Compass , vol.2 , pp. 302-317
    • Jung, T.1    Wickrama, K.2
  • 15
    • 21144468543 scopus 로고
    • Age, Criminal careers, and population heterogeneity specification and estimation of a nonparametric mixed poisson model
    • Nagin D S, Land K C. Age, Criminal careers, and population heterogeneity specification and estimation of a nonparametric mixed poisson model. Criminology 1993; 31: 327-362.
    • (1993) Criminology , vol.31 , pp. 327-362
    • Nagin, D.S.1    Land, K.C.2
  • 16
    • 1542742695 scopus 로고    scopus 로고
    • Modeling uncertainty in latent class membership: A case study in criminology
    • Roeder K, Lynch K G, Nagin D S. Modeling uncertainty in latent class membership: A case study in criminology. J Am Stat Assoc 1999; 94: 766-776.
    • (1999) J Am Stat Assoc , vol.94 , pp. 766-776
    • Roeder, K.1    Lynch, K.G.2    Nagin, D.S.3
  • 17
    • 34247124854 scopus 로고    scopus 로고
    • Advances in group-based trajectory modeling and an SAS procedure for estimating them
    • Jones B L, Nagin D S. Advances in group-based trajectory modeling and an SAS procedure for estimating them. Sociol Method Res 2007; 35: 542-571.
    • (2007) Sociol Method Res , vol.35 , pp. 542-571
    • Jones, B.L.1    Nagin, D.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.