-
1
-
-
33748566549
-
Microbial fuel cells: methodology and technology
-
Logan B.E., Hamelers B., Rozendal R., Schröder U., Keller J., Freguia S., Aelterman P., Verstraete W., Rabaey K. Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 2006, 40:5181-5192.
-
(2006)
Environ. Sci. Technol.
, vol.40
, pp. 5181-5192
-
-
Logan, B.E.1
Hamelers, B.2
Rozendal, R.3
Schröder, U.4
Keller, J.5
Freguia, S.6
Aelterman, P.7
Verstraete, W.8
Rabaey, K.9
-
2
-
-
60349091877
-
Bioanode performance in bioelectrochemical systems: recent improvements and prospects
-
Pham T.H., Aelterman P., Verstraete W. Bioanode performance in bioelectrochemical systems: recent improvements and prospects. Trends Biotechnol. 2009, 27:168-178.
-
(2009)
Trends Biotechnol.
, vol.27
, pp. 168-178
-
-
Pham, T.H.1
Aelterman, P.2
Verstraete, W.3
-
3
-
-
64749084426
-
Exoelectrogenic bacteria that power microbial fuel cells
-
Logan B.E. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 2009, 7:375-381.
-
(2009)
Nat. Rev. Microbiol.
, vol.7
, pp. 375-381
-
-
Logan, B.E.1
-
4
-
-
84876336126
-
Microbial fuel cells in power generation and extended applications
-
Li W.W., Sheng G.P. Microbial fuel cells in power generation and extended applications. Adv. Biochem. Eng./Biotechnol. 2012, 128:165-197.
-
(2012)
Adv. Biochem. Eng./Biotechnol.
, vol.128
, pp. 165-197
-
-
Li, W.W.1
Sheng, G.P.2
-
5
-
-
78650512558
-
Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation
-
Huang L.P., Chai X.L., Cheng S.A., Chen G.H. Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation. Chem. Eng. J. 2011, 166:652-661.
-
(2011)
Chem. Eng. J.
, vol.166
, pp. 652-661
-
-
Huang, L.P.1
Chai, X.L.2
Cheng, S.A.3
Chen, G.H.4
-
6
-
-
84865578232
-
Electrochemically active biofilms: facts and fiction, a review
-
Jerome B., Ryan R., Zbigniew L., Haluk B. Electrochemically active biofilms: facts and fiction, a review. Biofouling 2012, 28:789-812.
-
(2012)
Biofouling
, vol.28
, pp. 789-812
-
-
Jerome, B.1
Ryan, R.2
Zbigniew, L.3
Haluk, B.4
-
7
-
-
80052699260
-
Recent progress in electrodes for microbial fuel cells
-
Wei J., Liang P., Huang X. Recent progress in electrodes for microbial fuel cells. Bioresour. Technol. 2011, 102:9335-9344.
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 9335-9344
-
-
Wei, J.1
Liang, P.2
Huang, X.3
-
8
-
-
84857035571
-
New generation of carbon nanocomposite proton exchange membranes in microbial fuel cell systems
-
Ghasemi M., Shahgaldi S., Ismail M., Yaakob Z., Daud W.R.W. New generation of carbon nanocomposite proton exchange membranes in microbial fuel cell systems. Chem. Eng. J. 2012, 184:82-89.
-
(2012)
Chem. Eng. J.
, vol.184
, pp. 82-89
-
-
Ghasemi, M.1
Shahgaldi, S.2
Ismail, M.3
Yaakob, Z.4
Daud, W.R.W.5
-
9
-
-
0343486195
-
-
US Patent
-
B.H. Kim, D.H. Park, P.K. Shin, L.S. Chang, H.J. Kim, Mediator-less biofuel cell. US Patent, 1999, p. 5976719.
-
(1999)
Mediator-less biofuel cell
, pp. 5976719
-
-
Kim, B.H.1
Park, D.H.2
Shin, P.K.3
Chang, L.S.4
Kim, H.J.5
-
10
-
-
55349136222
-
Quantification of the internal resistance distribution of microbial fuel cells
-
Fan Y., Sharbrough E., Liu H. Quantification of the internal resistance distribution of microbial fuel cells. Environ. Sci. Technol. 2008, 42:8101-8107.
-
(2008)
Environ. Sci. Technol.
, vol.42
, pp. 8101-8107
-
-
Fan, Y.1
Sharbrough, E.2
Liu, H.3
-
11
-
-
76849084828
-
Scaling up microbial fuel cells and other bioelectrochemical systems
-
Logan B.E. Scaling up microbial fuel cells and other bioelectrochemical systems. Appl. Microbiol. Biotechnol. 2010, 85:1665-1671.
-
(2010)
Appl. Microbiol. Biotechnol.
, vol.85
, pp. 1665-1671
-
-
Logan, B.E.1
-
12
-
-
40049088335
-
Scale-up of membrane-free single-chamber microbial fuel cells
-
Liu H., Cheng S., Huang L., Logan B.E. Scale-up of membrane-free single-chamber microbial fuel cells. J. Power Sources. 2008, 179:274-279.
-
(2008)
J. Power Sources.
, vol.179
, pp. 274-279
-
-
Liu, H.1
Cheng, S.2
Huang, L.3
Logan, B.E.4
-
13
-
-
84861911299
-
Hamelers, bioelectrochemical systems: an outlook for practical applications
-
Sleutels T., Annemiek T.H., Cees J.N.B., Hubertus V.M. Hamelers, bioelectrochemical systems: an outlook for practical applications. ChemSusChem. 2012, 5:1012-1019.
-
(2012)
ChemSusChem.
, vol.5
, pp. 1012-1019
-
-
Sleutels, T.1
Annemiek, T.H.2
Cees, J.N.B.3
Hubertus, V.M.4
-
14
-
-
34047153745
-
Voltage reversal during microbial fuel cell stack operation
-
Oh S.E., Logan B.E. Voltage reversal during microbial fuel cell stack operation. J. Power Sources 2007, 167:11-17.
-
(2007)
J. Power Sources
, vol.167
, pp. 11-17
-
-
Oh, S.E.1
Logan, B.E.2
-
15
-
-
33646749524
-
Continuous electricity generation at high voltages and currents using stacked microbial fuel cells
-
Alterman P., Rabaey K., Pham H.T., Boon N., Verstraete W. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 2006, 40:3388-3394.
-
(2006)
Environ. Sci. Technol.
, vol.40
, pp. 3388-3394
-
-
Alterman, P.1
Rabaey, K.2
Pham, H.T.3
Boon, N.4
Verstraete, W.5
-
16
-
-
33645214430
-
Development of bipolar plate stack type microbial fuel cells
-
Shin S.H., Choi Y.J., Na S.H., Jung S.H., Kim S.H. Development of bipolar plate stack type microbial fuel cells. Bull. Korean Chem. Soc. 2006, 27:281-285.
-
(2006)
Bull. Korean Chem. Soc.
, vol.27
, pp. 281-285
-
-
Shin, S.H.1
Choi, Y.J.2
Na, S.H.3
Jung, S.H.4
Kim, S.H.5
-
17
-
-
84858226985
-
A novel microbial fuel cell stack for continuous production of clean energy
-
Rahimnejad M., Ghoreyshi G.D., Najafpour H., Younesi M.Shakeri. A novel microbial fuel cell stack for continuous production of clean energy. Int. J. Hydrogen Energy 2012, 37:5992-6000.
-
(2012)
Int. J. Hydrogen Energy
, vol.37
, pp. 5992-6000
-
-
Rahimnejad, M.1
Ghoreyshi, G.D.2
Najafpour, H.3
Younesi, M.4
-
18
-
-
65049085916
-
Substrate cross-conduction effect on the performance of serially connected microbial fuel cell stack
-
Zhuang L., Zhou S.G. Substrate cross-conduction effect on the performance of serially connected microbial fuel cell stack. Electrochem. Commun. 2009, 11:937-940.
-
(2009)
Electrochem. Commun.
, vol.11
, pp. 937-940
-
-
Zhuang, L.1
Zhou, S.G.2
-
19
-
-
77956131444
-
Effect of anolyte recirculation rates and catholytes on electricity generation in a litre-scale upflow microbial fuel cell
-
Zhang F., Jacobson K.S., Torres P., He Z. Effect of anolyte recirculation rates and catholytes on electricity generation in a litre-scale upflow microbial fuel cell. Energy Environ. Sci. 2010, 3:1347-1352.
-
(2010)
Energy Environ. Sci.
, vol.3
, pp. 1347-1352
-
-
Zhang, F.1
Jacobson, K.S.2
Torres, P.3
He, Z.4
-
20
-
-
67349106397
-
Liter-scale microbial fuel cells operated in a complete loop
-
Clauwaert P., Mulenga S., Aelterman P., Verstraete W. Liter-scale microbial fuel cells operated in a complete loop. Appl. Microbiol. Biotechnol. 2009, 83:241-247.
-
(2009)
Appl. Microbiol. Biotechnol.
, vol.83
, pp. 241-247
-
-
Clauwaert, P.1
Mulenga, S.2
Aelterman, P.3
Verstraete, W.4
-
21
-
-
72249101946
-
Analysis and Improvement of a scaled-up and stacked microbial fuel cell
-
Dekker A., Heijne A.T., Saakes M., Hamelers H.V.M., Buisman C.J.N. Analysis and Improvement of a scaled-up and stacked microbial fuel cell. Environ. Sci. Technol. 2009, 43:9038-9042.
-
(2009)
Environ. Sci. Technol.
, vol.43
, pp. 9038-9042
-
-
Dekker, A.1
Heijne, A.T.2
Saakes, M.3
Hamelers, H.V.M.4
Buisman, C.J.N.5
-
22
-
-
51649118803
-
Power output and coulombic efficiencies from biofilms of geobacter sulfurreducens comparable to mixed community microbial fuel cells
-
Nevin K.P., Richter H., Covalla S.F., Johnson J.P., Woodard T.L., Orloff A.L., Jia H., Zhang M., Lovley D.R. Power output and coulombic efficiencies from biofilms of geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ. Microbiol. 2008, 10:2505-2514.
-
(2008)
Environ. Microbiol.
, vol.10
, pp. 2505-2514
-
-
Nevin, K.P.1
Richter, H.2
Covalla, S.F.3
Johnson, J.P.4
Woodard, T.L.5
Orloff, A.L.6
Jia, H.7
Zhang, M.8
Lovley, D.R.9
-
23
-
-
84864224064
-
Improvement performance of CEA microbial fuel cells with increased reactor size
-
Fan Y.Z., Han S.K., Liu H. Improvement performance of CEA microbial fuel cells with increased reactor size. Energy Environ. Sci. 2012, 5:8273-8280.
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 8273-8280
-
-
Fan, Y.Z.1
Han, S.K.2
Liu, H.3
-
25
-
-
79551684612
-
Increasing power generation for scaling up single-chamber air cathode microbial fuel cells
-
Cheng S., Logan B.E. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Bioresour. Technol. 2011, 102:4468-4473.
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 4468-4473
-
-
Cheng, S.1
Logan, B.E.2
-
26
-
-
72049115228
-
Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell
-
Di Lorenzo M., Scott K., Curtis T.P., Head I.M. Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell. Chem. Eng. J. 2010, 156:40-48.
-
(2010)
Chem. Eng. J.
, vol.156
, pp. 40-48
-
-
Di Lorenzo, M.1
Scott, K.2
Curtis, T.P.3
Head, I.M.4
-
27
-
-
50349093076
-
Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes
-
Aelterman P., Versichele M., Marzorati M., Boon N., Verstraete W. Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresour. Technol. 2008, 99:8895-8902.
-
(2008)
Bioresour. Technol.
, vol.99
, pp. 8895-8902
-
-
Aelterman, P.1
Versichele, M.2
Marzorati, M.3
Boon, N.4
Verstraete, W.5
-
28
-
-
22344440310
-
Power generation in fed-batch microbial fuel cells as a founction of iron strength, temperature, and reactor configuration
-
Liu H., Chen S., Logan B.E. Power generation in fed-batch microbial fuel cells as a founction of iron strength, temperature, and reactor configuration. Environ. Sci. Technol. 2005, 39:5488-5493.
-
(2005)
Environ. Sci. Technol.
, vol.39
, pp. 5488-5493
-
-
Liu, H.1
Chen, S.2
Logan, B.E.3
-
29
-
-
33645761181
-
Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing
-
Cheng S., Liu H., Logan B.E. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ. Sci. Technol. 2006, 40:2426-2432.
-
(2006)
Environ. Sci. Technol.
, vol.40
, pp. 2426-2432
-
-
Cheng, S.1
Liu, H.2
Logan, B.E.3
-
30
-
-
79956366821
-
Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances
-
Zhang L., Zhu X., Li J., Liao Q., Ye D.D. Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances. J. Power. Sources 2011, 196:6029-6035.
-
(2011)
J. Power. Sources
, vol.196
, pp. 6029-6035
-
-
Zhang, L.1
Zhu, X.2
Li, J.3
Liao, Q.4
Ye, D.D.5
-
31
-
-
20344399137
-
Measurement of catalyst layer electrolyte resistance in PEFCs using electrochemical impedance spectroscopy
-
Rohit M., Mark F.M., Daniel R.B. Measurement of catalyst layer electrolyte resistance in PEFCs using electrochemical impedance spectroscopy. J. Electrochem. Soc. 2005, 152:970-977.
-
(2005)
J. Electrochem. Soc.
, vol.152
, pp. 970-977
-
-
Rohit, M.1
Mark, F.M.2
Daniel, R.B.3
-
32
-
-
39149112242
-
The anode potential regulates bacterial activity in microbial fuel cells
-
Aelterman P., Freguia S., Keller J., Verstraete W., Rabaey K. The anode potential regulates bacterial activity in microbial fuel cells. Appl. Microbiol. Biotechnol. 2008, 78:409-418.
-
(2008)
Appl. Microbiol. Biotechnol.
, vol.78
, pp. 409-418
-
-
Aelterman, P.1
Freguia, S.2
Keller, J.3
Verstraete, W.4
Rabaey, K.5
-
33
-
-
79959367979
-
Performance of a scaled-up microbial fuel cell with iron reduction as the cathode reaction
-
Annemiek T.H., Fei L., Lucas S.V.R., Michel S., Hubertus V.M.H., Cees J.N.B. Performance of a scaled-up microbial fuel cell with iron reduction as the cathode reaction. J. Power Sources 2011, 196:7572-7577.
-
(2011)
J. Power Sources
, vol.196
, pp. 7572-7577
-
-
Annemiek, T.H.1
Fei, L.2
Lucas, S.V.R.3
Michel, S.4
Hubertus, V.M.H.5
Cees, J.N.B.6
-
34
-
-
77950936178
-
A new insight into potential regulation on growth and power generation of geobacter sulfurreducens in microbial fuel cells based on energy viewpoint
-
Wei J., Liang P., Cao X., Huang X. A new insight into potential regulation on growth and power generation of geobacter sulfurreducens in microbial fuel cells based on energy viewpoint. Environ. Sci. Technol. 2010, 44:3187-3191.
-
(2010)
Environ. Sci. Technol.
, vol.44
, pp. 3187-3191
-
-
Wei, J.1
Liang, P.2
Cao, X.3
Huang, X.4
-
35
-
-
40149105259
-
Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell
-
Ishii S., Shimoyama T., Hotta Y., Watanabe K. Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell. BMC. Microbiol. 2008, 8. 10.1186/1471-2180-8-6.
-
(2008)
BMC. Microbiol.
, vol.8
-
-
Ishii, S.1
Shimoyama, T.2
Hotta, Y.3
Watanabe, K.4
-
36
-
-
33751014053
-
Biofilm and nanowire production leads to increased current in geobacter sulfurreducens fuel cells
-
Reguera G., Nevin K.P., Nicoll J.S., Covalla S.F., Woodard T.L., Lovley D.R. Biofilm and nanowire production leads to increased current in geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol. 2006, 72:7345-7348.
-
(2006)
Appl. Environ. Microbiol.
, vol.72
, pp. 7345-7348
-
-
Reguera, G.1
Nevin, K.P.2
Nicoll, J.S.3
Covalla, S.F.4
Woodard, T.L.5
Lovley, D.R.6
-
37
-
-
0036022521
-
Harnessing microbially generated power on the seafloor
-
Tender L.M., Reimers C.E., Stecher H.A., Holmes D.E., Bond D.R., Lowy D.A., Kanoelani P., Fertig S.J., Lovley D.R. Harnessing microbially generated power on the seafloor. Nat. Biotechnol. 2002, 20:821-825.
-
(2002)
Nat. Biotechnol.
, vol.20
, pp. 821-825
-
-
Tender, L.M.1
Reimers, C.E.2
Stecher, H.A.3
Holmes, D.E.4
Bond, D.R.5
Lowy, D.A.6
Kanoelani, P.7
Fertig, S.J.8
Lovley, D.R.9
-
38
-
-
77955579002
-
Power recovery with multi-anode/cathode microbial fuel cells suitable for future large-scale applications
-
Daqian J., Lia Xiang, Dustin R., James M., Baikun Li. Power recovery with multi-anode/cathode microbial fuel cells suitable for future large-scale applications. Int. J. Hydrogen Energy. 2010, 35:8683-8689.
-
(2010)
Int. J. Hydrogen Energy.
, vol.35
, pp. 8683-8689
-
-
Daqian, J.1
Lia, X.2
Dustin, R.3
James, M.4
Baikun, L.5
-
39
-
-
47049116935
-
Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria
-
Torres C.I., Marcus A.K., Rittmann B.E. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnol. Bioeng. 2008, 100:872-881.
-
(2008)
Biotechnol. Bioeng.
, vol.100
, pp. 872-881
-
-
Torres, C.I.1
Marcus, A.K.2
Rittmann, B.E.3
-
40
-
-
33644498839
-
Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells
-
Oh S.E., Logan B.E. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl. Microbiol. Biotechnol. 2006, 70:162-169.
-
(2006)
Appl. Microbiol. Biotechnol.
, vol.70
, pp. 162-169
-
-
Oh, S.E.1
Logan, B.E.2
|