메뉴 건너뛰기




Volumn 223, Issue , 2013, Pages 623-631

Anodic current distribution in a liter-scale microbial fuel cell with electrode arrays

Author keywords

Current distribution; Electrode arrays; Microbial fuel cell; Scale up

Indexed keywords

ANODE ELECTRODES; ANODIC CURRENTS; CURRENT DISTRIBUTION; CURRENT GENERATION; ELECTRODE ARRAYS; ELECTRODE SPACING; OHMIC RESISTANCE; SCALE-UP;

EID: 84876344647     PISSN: 13858947     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cej.2013.03.035     Document Type: Article
Times cited : (40)

References (40)
  • 2
    • 60349091877 scopus 로고    scopus 로고
    • Bioanode performance in bioelectrochemical systems: recent improvements and prospects
    • Pham T.H., Aelterman P., Verstraete W. Bioanode performance in bioelectrochemical systems: recent improvements and prospects. Trends Biotechnol. 2009, 27:168-178.
    • (2009) Trends Biotechnol. , vol.27 , pp. 168-178
    • Pham, T.H.1    Aelterman, P.2    Verstraete, W.3
  • 3
    • 64749084426 scopus 로고    scopus 로고
    • Exoelectrogenic bacteria that power microbial fuel cells
    • Logan B.E. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 2009, 7:375-381.
    • (2009) Nat. Rev. Microbiol. , vol.7 , pp. 375-381
    • Logan, B.E.1
  • 4
    • 84876336126 scopus 로고    scopus 로고
    • Microbial fuel cells in power generation and extended applications
    • Li W.W., Sheng G.P. Microbial fuel cells in power generation and extended applications. Adv. Biochem. Eng./Biotechnol. 2012, 128:165-197.
    • (2012) Adv. Biochem. Eng./Biotechnol. , vol.128 , pp. 165-197
    • Li, W.W.1    Sheng, G.P.2
  • 5
    • 78650512558 scopus 로고    scopus 로고
    • Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation
    • Huang L.P., Chai X.L., Cheng S.A., Chen G.H. Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation. Chem. Eng. J. 2011, 166:652-661.
    • (2011) Chem. Eng. J. , vol.166 , pp. 652-661
    • Huang, L.P.1    Chai, X.L.2    Cheng, S.A.3    Chen, G.H.4
  • 6
    • 84865578232 scopus 로고    scopus 로고
    • Electrochemically active biofilms: facts and fiction, a review
    • Jerome B., Ryan R., Zbigniew L., Haluk B. Electrochemically active biofilms: facts and fiction, a review. Biofouling 2012, 28:789-812.
    • (2012) Biofouling , vol.28 , pp. 789-812
    • Jerome, B.1    Ryan, R.2    Zbigniew, L.3    Haluk, B.4
  • 7
    • 80052699260 scopus 로고    scopus 로고
    • Recent progress in electrodes for microbial fuel cells
    • Wei J., Liang P., Huang X. Recent progress in electrodes for microbial fuel cells. Bioresour. Technol. 2011, 102:9335-9344.
    • (2011) Bioresour. Technol. , vol.102 , pp. 9335-9344
    • Wei, J.1    Liang, P.2    Huang, X.3
  • 8
    • 84857035571 scopus 로고    scopus 로고
    • New generation of carbon nanocomposite proton exchange membranes in microbial fuel cell systems
    • Ghasemi M., Shahgaldi S., Ismail M., Yaakob Z., Daud W.R.W. New generation of carbon nanocomposite proton exchange membranes in microbial fuel cell systems. Chem. Eng. J. 2012, 184:82-89.
    • (2012) Chem. Eng. J. , vol.184 , pp. 82-89
    • Ghasemi, M.1    Shahgaldi, S.2    Ismail, M.3    Yaakob, Z.4    Daud, W.R.W.5
  • 10
    • 55349136222 scopus 로고    scopus 로고
    • Quantification of the internal resistance distribution of microbial fuel cells
    • Fan Y., Sharbrough E., Liu H. Quantification of the internal resistance distribution of microbial fuel cells. Environ. Sci. Technol. 2008, 42:8101-8107.
    • (2008) Environ. Sci. Technol. , vol.42 , pp. 8101-8107
    • Fan, Y.1    Sharbrough, E.2    Liu, H.3
  • 11
    • 76849084828 scopus 로고    scopus 로고
    • Scaling up microbial fuel cells and other bioelectrochemical systems
    • Logan B.E. Scaling up microbial fuel cells and other bioelectrochemical systems. Appl. Microbiol. Biotechnol. 2010, 85:1665-1671.
    • (2010) Appl. Microbiol. Biotechnol. , vol.85 , pp. 1665-1671
    • Logan, B.E.1
  • 12
    • 40049088335 scopus 로고    scopus 로고
    • Scale-up of membrane-free single-chamber microbial fuel cells
    • Liu H., Cheng S., Huang L., Logan B.E. Scale-up of membrane-free single-chamber microbial fuel cells. J. Power Sources. 2008, 179:274-279.
    • (2008) J. Power Sources. , vol.179 , pp. 274-279
    • Liu, H.1    Cheng, S.2    Huang, L.3    Logan, B.E.4
  • 13
    • 84861911299 scopus 로고    scopus 로고
    • Hamelers, bioelectrochemical systems: an outlook for practical applications
    • Sleutels T., Annemiek T.H., Cees J.N.B., Hubertus V.M. Hamelers, bioelectrochemical systems: an outlook for practical applications. ChemSusChem. 2012, 5:1012-1019.
    • (2012) ChemSusChem. , vol.5 , pp. 1012-1019
    • Sleutels, T.1    Annemiek, T.H.2    Cees, J.N.B.3    Hubertus, V.M.4
  • 14
    • 34047153745 scopus 로고    scopus 로고
    • Voltage reversal during microbial fuel cell stack operation
    • Oh S.E., Logan B.E. Voltage reversal during microbial fuel cell stack operation. J. Power Sources 2007, 167:11-17.
    • (2007) J. Power Sources , vol.167 , pp. 11-17
    • Oh, S.E.1    Logan, B.E.2
  • 15
    • 33646749524 scopus 로고    scopus 로고
    • Continuous electricity generation at high voltages and currents using stacked microbial fuel cells
    • Alterman P., Rabaey K., Pham H.T., Boon N., Verstraete W. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 2006, 40:3388-3394.
    • (2006) Environ. Sci. Technol. , vol.40 , pp. 3388-3394
    • Alterman, P.1    Rabaey, K.2    Pham, H.T.3    Boon, N.4    Verstraete, W.5
  • 17
    • 84858226985 scopus 로고    scopus 로고
    • A novel microbial fuel cell stack for continuous production of clean energy
    • Rahimnejad M., Ghoreyshi G.D., Najafpour H., Younesi M.Shakeri. A novel microbial fuel cell stack for continuous production of clean energy. Int. J. Hydrogen Energy 2012, 37:5992-6000.
    • (2012) Int. J. Hydrogen Energy , vol.37 , pp. 5992-6000
    • Rahimnejad, M.1    Ghoreyshi, G.D.2    Najafpour, H.3    Younesi, M.4
  • 18
    • 65049085916 scopus 로고    scopus 로고
    • Substrate cross-conduction effect on the performance of serially connected microbial fuel cell stack
    • Zhuang L., Zhou S.G. Substrate cross-conduction effect on the performance of serially connected microbial fuel cell stack. Electrochem. Commun. 2009, 11:937-940.
    • (2009) Electrochem. Commun. , vol.11 , pp. 937-940
    • Zhuang, L.1    Zhou, S.G.2
  • 19
    • 77956131444 scopus 로고    scopus 로고
    • Effect of anolyte recirculation rates and catholytes on electricity generation in a litre-scale upflow microbial fuel cell
    • Zhang F., Jacobson K.S., Torres P., He Z. Effect of anolyte recirculation rates and catholytes on electricity generation in a litre-scale upflow microbial fuel cell. Energy Environ. Sci. 2010, 3:1347-1352.
    • (2010) Energy Environ. Sci. , vol.3 , pp. 1347-1352
    • Zhang, F.1    Jacobson, K.S.2    Torres, P.3    He, Z.4
  • 23
    • 84864224064 scopus 로고    scopus 로고
    • Improvement performance of CEA microbial fuel cells with increased reactor size
    • Fan Y.Z., Han S.K., Liu H. Improvement performance of CEA microbial fuel cells with increased reactor size. Energy Environ. Sci. 2012, 5:8273-8280.
    • (2012) Energy Environ. Sci. , vol.5 , pp. 8273-8280
    • Fan, Y.Z.1    Han, S.K.2    Liu, H.3
  • 25
    • 79551684612 scopus 로고    scopus 로고
    • Increasing power generation for scaling up single-chamber air cathode microbial fuel cells
    • Cheng S., Logan B.E. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Bioresour. Technol. 2011, 102:4468-4473.
    • (2011) Bioresour. Technol. , vol.102 , pp. 4468-4473
    • Cheng, S.1    Logan, B.E.2
  • 26
    • 72049115228 scopus 로고    scopus 로고
    • Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell
    • Di Lorenzo M., Scott K., Curtis T.P., Head I.M. Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell. Chem. Eng. J. 2010, 156:40-48.
    • (2010) Chem. Eng. J. , vol.156 , pp. 40-48
    • Di Lorenzo, M.1    Scott, K.2    Curtis, T.P.3    Head, I.M.4
  • 27
    • 50349093076 scopus 로고    scopus 로고
    • Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes
    • Aelterman P., Versichele M., Marzorati M., Boon N., Verstraete W. Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresour. Technol. 2008, 99:8895-8902.
    • (2008) Bioresour. Technol. , vol.99 , pp. 8895-8902
    • Aelterman, P.1    Versichele, M.2    Marzorati, M.3    Boon, N.4    Verstraete, W.5
  • 28
    • 22344440310 scopus 로고    scopus 로고
    • Power generation in fed-batch microbial fuel cells as a founction of iron strength, temperature, and reactor configuration
    • Liu H., Chen S., Logan B.E. Power generation in fed-batch microbial fuel cells as a founction of iron strength, temperature, and reactor configuration. Environ. Sci. Technol. 2005, 39:5488-5493.
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 5488-5493
    • Liu, H.1    Chen, S.2    Logan, B.E.3
  • 29
    • 33645761181 scopus 로고    scopus 로고
    • Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing
    • Cheng S., Liu H., Logan B.E. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ. Sci. Technol. 2006, 40:2426-2432.
    • (2006) Environ. Sci. Technol. , vol.40 , pp. 2426-2432
    • Cheng, S.1    Liu, H.2    Logan, B.E.3
  • 30
    • 79956366821 scopus 로고    scopus 로고
    • Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances
    • Zhang L., Zhu X., Li J., Liao Q., Ye D.D. Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances. J. Power. Sources 2011, 196:6029-6035.
    • (2011) J. Power. Sources , vol.196 , pp. 6029-6035
    • Zhang, L.1    Zhu, X.2    Li, J.3    Liao, Q.4    Ye, D.D.5
  • 31
    • 20344399137 scopus 로고    scopus 로고
    • Measurement of catalyst layer electrolyte resistance in PEFCs using electrochemical impedance spectroscopy
    • Rohit M., Mark F.M., Daniel R.B. Measurement of catalyst layer electrolyte resistance in PEFCs using electrochemical impedance spectroscopy. J. Electrochem. Soc. 2005, 152:970-977.
    • (2005) J. Electrochem. Soc. , vol.152 , pp. 970-977
    • Rohit, M.1    Mark, F.M.2    Daniel, R.B.3
  • 34
    • 77950936178 scopus 로고    scopus 로고
    • A new insight into potential regulation on growth and power generation of geobacter sulfurreducens in microbial fuel cells based on energy viewpoint
    • Wei J., Liang P., Cao X., Huang X. A new insight into potential regulation on growth and power generation of geobacter sulfurreducens in microbial fuel cells based on energy viewpoint. Environ. Sci. Technol. 2010, 44:3187-3191.
    • (2010) Environ. Sci. Technol. , vol.44 , pp. 3187-3191
    • Wei, J.1    Liang, P.2    Cao, X.3    Huang, X.4
  • 35
    • 40149105259 scopus 로고    scopus 로고
    • Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell
    • Ishii S., Shimoyama T., Hotta Y., Watanabe K. Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell. BMC. Microbiol. 2008, 8. 10.1186/1471-2180-8-6.
    • (2008) BMC. Microbiol. , vol.8
    • Ishii, S.1    Shimoyama, T.2    Hotta, Y.3    Watanabe, K.4
  • 38
    • 77955579002 scopus 로고    scopus 로고
    • Power recovery with multi-anode/cathode microbial fuel cells suitable for future large-scale applications
    • Daqian J., Lia Xiang, Dustin R., James M., Baikun Li. Power recovery with multi-anode/cathode microbial fuel cells suitable for future large-scale applications. Int. J. Hydrogen Energy. 2010, 35:8683-8689.
    • (2010) Int. J. Hydrogen Energy. , vol.35 , pp. 8683-8689
    • Daqian, J.1    Lia, X.2    Dustin, R.3    James, M.4    Baikun, L.5
  • 39
    • 47049116935 scopus 로고    scopus 로고
    • Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria
    • Torres C.I., Marcus A.K., Rittmann B.E. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnol. Bioeng. 2008, 100:872-881.
    • (2008) Biotechnol. Bioeng. , vol.100 , pp. 872-881
    • Torres, C.I.1    Marcus, A.K.2    Rittmann, B.E.3
  • 40
    • 33644498839 scopus 로고    scopus 로고
    • Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells
    • Oh S.E., Logan B.E. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl. Microbiol. Biotechnol. 2006, 70:162-169.
    • (2006) Appl. Microbiol. Biotechnol. , vol.70 , pp. 162-169
    • Oh, S.E.1    Logan, B.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.