메뉴 건너뛰기




Volumn 29, Issue 8, 2013, Pages 1095-1097

IRootLab: A free and open-source MATLAB toolbox for vibrational biospectroscopy data analysis

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; COMPUTER INTERFACE; COMPUTER PROGRAM; INFRARED SPECTROPHOTOMETRY; METHODOLOGY; RAMAN SPECTROMETRY;

EID: 84876266625     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btt084     Document Type: Article
Times cited : (140)

References (18)
  • 3
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • Article no. 27
    • Chang, C.-C. and Lin, C.-J. (2011) LIBSVM: a library for support vector machines. ACM TIST, 2, Article no. 27.
    • (2011) ACM TIST , pp. 2
    • Chang, C.-C.1    Lin, C.-J.2
  • 4
    • 0141615786 scopus 로고    scopus 로고
    • Quality control and peak finding for proteomics data collected from nipple aspirate fluid by surface-enhanced laser desorption and ionization
    • Coombes, K.R. et al. (2003) Quality control and peak finding for proteomics data collected from nipple aspirate fluid by surface-enhanced laser desorption and ionization. Clin. Chem., 49, 1615-1623.
    • (2003) Clin. Chem. , vol.49 , pp. 1615-1623
    • Coombes, K.R.1
  • 6
    • 0003663755 scopus 로고    scopus 로고
    • PRTools4\-a MATLAB toolbox for pattern recognition
    • Duin, R.P.W. et al. (2007) PRTools4\-a MATLAB toolbox for pattern recognition. Pattern Recognit., 1-61.
    • (2007) Pattern Recognit. , pp. 1-61
    • Duin, R.P.W.1
  • 10
    • 78049383639 scopus 로고    scopus 로고
    • A practical guide to support vector classification
    • Hsu, C. et al. (2010) A practical guide to support vector classification. Bioinformatics, 1, 1-16.
    • (2010) Bioinformatics , vol.1 , pp. 1-16
    • Hsu, C.1
  • 12
    • 78049323886 scopus 로고    scopus 로고
    • Distinguishing cell types or populations based on the computational analysis of their infrared spectra
    • Martin, F.L. et al. (2010) Distinguishing cell types or populations based on the computational analysis of their infrared spectra. Nat. Prot., 5, 1748-1760.
    • (2010) Nat. Prot. , vol.5 , pp. 1748-1760
    • Martin, F.L.1
  • 13
    • 0031926888 scopus 로고    scopus 로고
    • Near-optimal region selection for feature space reduction: Novel preprocessing methods for classifying MR spectra
    • Nikulin, A.E. et al. (1998) Near-optimal region selection for feature space reduction: novel preprocessing methods for classifying MR spectra. NMR Biomed., 11, 209-16.
    • (1998) NMR Biomed. , vol.11 , pp. 209-216
    • Nikulin, A.E.1
  • 15
    • 84855869132 scopus 로고    scopus 로고
    • Concentration-dependent effects of carbon nanoparticles in gram-negative bacteria determined by infrared spectroscopy with multivariate analysis
    • Riding, MJ. et al. (2012) Concentration-dependent effects of carbon nanoparticles in gram-negative bacteria determined by infrared spectroscopy with multivariate analysis. Environ. Pollut., 163C, 226-234.
    • (2012) Environ. Pollut. , vol.163 C , pp. 226-234
    • Riding, M.J.1
  • 16
    • 84855658251 scopus 로고    scopus 로고
    • Creating robust, reliable, clinically relevant classifiers from spectroscopic data
    • Somorjai, R.L. (2009) Creating robust, reliable, clinically relevant classifiers from spectroscopic data. Biophys. Rev., 1, 201-211.
    • (2009) Biophys. Rev. , vol.1 , pp. 201-211
    • Somorjai, R.L.1
  • 17
    • 78349272779 scopus 로고    scopus 로고
    • Syrian hamster embryo (SHE) assay (pH 6.7) coupled with infrared spectroscopy and chemometrics towards toxicological assessment
    • Trevisan, J. et al. (2010) Syrian hamster embryo (SHE) assay (pH 6.7) coupled with infrared spectroscopy and chemometrics towards toxicological assessment. Analyst, 135, 3266-3272.
    • (2010) Analyst , vol.135 , pp. 3266-3272
    • Trevisan, J.1
  • 18
    • 84862565859 scopus 로고    scopus 로고
    • Extracting biological information with computational ana- lysis of Fourier-transform infrared (FTIR) biospectroscopy datasets: Current practices to future perspectives
    • Trevisan, J. et al. (2012) Extracting biological information with computational ana- lysis of Fourier-transform infrared (FTIR) biospectroscopy datasets: current practices to future perspectives. Analyst, 137, 3202-3215.
    • (2012) Analyst , vol.137 , pp. 3202-3215
    • Trevisan, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.