-
2
-
-
81555222614
-
On the convergence of Krylov subspace methods for matrix Mittag-Leffler functions
-
I. Moret and P. Novati (2011). On the convergence of Krylov subspace methods for matrix Mittag-Leffler functions. SIAM J. Numer. Anal. 49:2144-2164.
-
(2011)
SIAM J. Numer. Anal.
, vol.49
, pp. 2144-2164
-
-
Moret, I.1
Novati, P.2
-
3
-
-
78751643802
-
On the use of matrix functions for fractional partial differential equations
-
R. Garrappa and M. Popolizio (2011). On the use of matrix functions for fractional partial differential equations. Math. Comput. Simulation 81:1045-1056.
-
(2011)
Math. Comput. Simulation
, vol.81
, pp. 1045-1056
-
-
Garrappa, R.1
Popolizio, M.2
-
4
-
-
79961015107
-
Generalized exponential time differencing methods for fractional order problems
-
R. Garrappa and M. Popolizio (2011). Generalized exponential time differencing methods for fractional order problems. Comput. Math. Appl. 62:876-890.
-
(2011)
Comput. Math. Appl.
, vol.62
, pp. 876-890
-
-
Garrappa, R.1
Popolizio, M.2
-
5
-
-
84865707794
-
Resolvent Krylov subspace approximation to operator functions
-
V. Grimm (2012). Resolvent Krylov subspace approximation to operator functions. BIT Numer. Math. 52:639-659.
-
(2012)
BIT Numer. Math.
, vol.52
, pp. 639-659
-
-
Grimm, V.1
-
6
-
-
8144228833
-
RD-rational approximations of the matrix exponential
-
I. Moret and P. Novati (2004). RD-rational approximations of the matrix exponential. BIT Numer. Math. 44:595-615.
-
(2004)
BIT Numer. Math.
, vol.44
, pp. 595-615
-
-
Moret, I.1
Novati, P.2
-
7
-
-
33646928736
-
Preconditioning Lanczos approximations to the matrix exponential
-
J. van den Eshof and M. Hochbruck (2006). Preconditioning Lanczos approximations to the matrix exponential. SIAM J. Sci. Comp. 27:1438-1457.
-
(2006)
SIAM J. Sci. Comp.
, vol.27
, pp. 1438-1457
-
-
Eshof Den J.Van1
Hochbruck, M.2
-
9
-
-
0003687337
-
-
AMS series 110, Springer, Berlin
-
O. Diekmann, S. A. van Gils, S. M. LunelVerduyn, and H. O. Walther (1995). Delay Equations, Functional-Complex and Nonlinear Analysis. AMS series 110, Springer, Berlin.
-
(1995)
Delay Equations, Functional-Complex and Nonlinear Analysis
-
-
Diekmann, O.1
Van Gils, S.A.2
Lunelverduyn, S.M.3
Walther, H.O.4
-
10
-
-
0034407032
-
Numerical solution of constant coefficient linear delay differential equations as abstract Cauchy problems
-
A. Bellen and S. Maset (2000). Numerical solution of constant coefficient linear delay differential equations as abstract Cauchy problems. Numer. Math. 84:351-374.
-
(2000)
Numer. Math.
, vol.84
, pp. 351-374
-
-
Bellen, A.1
Maset, S.2
-
11
-
-
78649915752
-
Approximation of semigroups and related operator functions by resolvent series
-
V. Grimm and M. Gugat (2010). Approximation of semigroups and related operator functions by resolvent series. SIAM J. Numer. Anal. 48:1826-1845.
-
(2010)
SIAM J. Numer. Anal.
, vol.48
, pp. 1826-1845
-
-
Grimm, V.1
Gugat, M.2
-
13
-
-
0347799731
-
On Krylov subspace approximation to the matrix exponential operator
-
M. Hochbruck and C. Lubich (1997). On Krylov subspace approximation to the matrix exponential operator. SIAM J. Numer. Anal. 34:1911-1925.
-
(1997)
SIAM J. Numer. Anal.
, vol.34
, pp. 1911-1925
-
-
Hochbruck, M.1
Lubich, C.2
-
16
-
-
77956153506
-
The analysis of fractional differential equations
-
Springer, Berlin
-
K. Diethelm (2010). The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics n. 2004, Springer, Berlin.
-
(2010)
Lecture Notes in Mathematics N. 2004
-
-
Diethelm, K.1
-
17
-
-
55349106156
-
Numerical algorithm for calculating the generalized Mittag-Leffler function
-
H. J. Seybold and R. Hilfer (2008). Numerical algorithm for calculating the generalized Mittag-Leffler function. SIAM J. Numer. Anal. 47:69-88.
-
(2008)
SIAM J. Numer. Anal.
, vol.47
, pp. 69-88
-
-
Seybold, H.J.1
Hilfer, R.2
-
18
-
-
84879234882
-
Evaluation of generalized Mittag-Leffler functions on the real line
-
DOI: 10.1007/s10444-012-9274-z
-
R. Garrappa and M. Popolizio (2012). Evaluation of generalized Mittag-Leffler functions on the real line. Adv. Comput. Math. DOI: 10.1007/s10444-012-9274-z.
-
(2012)
Adv. Comput. Math
-
-
Garrappa, R.1
Popolizio, M.2
-
19
-
-
0026818185
-
Analysis of some Krylov subspace approximations to the matrix exponential operator
-
Y. Saad (1992). Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29:209-228.
-
(1992)
SIAM J. Numer. Anal.
, vol.29
, pp. 209-228
-
-
Saad, Y.1
-
20
-
-
0000446481
-
Two polynomial methods for calculating functions of symmetric matrices
-
V. Druskin and L. Knizhnerman (1989). Two polynomial methods for calculating functions of symmetric matrices. Comput. Maths. Math. Phys. 29:112-121.
-
(1989)
Comput. Maths. Math. Phys.
, vol.29
, pp. 112-121
-
-
Druskin, V.1
Knizhnerman, L.2
-
22
-
-
70449371467
-
Error estimates for polynomial Krylov approximations to matrix functions
-
F. Diele, I. Moret and S. Ragni (2008). Error estimates for polynomial Krylov approximations to matrix functions. SIAM J. Matrix Analysis Appl. 30:1546-156.
-
(2008)
SIAM J. Matrix Analysis Appl.
, vol.30
, pp. 1546-156
-
-
Diele, F.1
Moret, I.2
Ragni, S.3
-
23
-
-
34248578148
-
On RD-rational Krylov approximations to the core functions of exponential integrators
-
I. Moret (2007). On RD-rational Krylov approximations to the core functions of exponential integrators. Numerical Linear Algebra with Applications. 14:445-457.
-
(2007)
Numerical Linear Algebra with Applications.
, vol.14
, pp. 445-457
-
-
Moret, I.1
-
24
-
-
49749108595
-
Acceleration techniques for approximating the matrix exponential operator
-
M. Popolizio and V. Simoncini (2008). Acceleration techniques for approximating the matrix exponential operator. SIAM J. Matrix Analysis and Appl. 30:657-683.
-
(2008)
SIAM J. Matrix Analysis and Appl.
, vol.30
, pp. 657-683
-
-
Popolizio, M.1
Simoncini, V.2
-
25
-
-
84856259492
-
Using the restricted-denominator rational arnoldi method for exponential integrators
-
P. Novati (2011). Using the Restricted-Denominator rational Arnoldi method for exponential integrators. SIAM J. Matrix Anal. and Appl. 32:1537-1558.
-
(2011)
SIAM J. Matrix Anal. and Appl.
, vol.32
, pp. 1537-1558
-
-
Novati, P.1
-
26
-
-
84876204356
-
Rational krylov methods in exponential integrators for european option pricing
-
S. Ragni (To appear). Rational Krylov methods in exponential integrators for European option pricing. Numer. Linear Alg. Appl. Preprint.
-
Numer. Linear Alg. Appl. Preprint
-
-
Ragni, S.1
-
27
-
-
84890186942
-
The restarted shift-and-invert Krylov method for matrix functions
-
DOI: 10.1002/nla
-
I. Moret and M. Popolizio (2012). The restarted shift-and-invert Krylov method for matrix functions. Numerical Linear Algebra with Applications. DOI: 10.1002/nla.
-
(2012)
Numerical Linear Algebra with Applications
-
-
Moret, I.1
Popolizio, M.2
-
28
-
-
34548162562
-
Parabolic and hyperbolic contours for computing the Bromwich integral
-
J. A. C. Weideman and L. N. Trefethen (2007). Parabolic and hyperbolic contours for computing the Bromwich integral. Math. Comp. 78:1341-1358.
-
(2007)
Math. Comp.
, vol.78
, pp. 1341-1358
-
-
Weideman, J.A.C.1
Trefethen, L.N.2
-
29
-
-
77951568661
-
Solution of large scale evolutionary problems using rational Krylov subspaces with optimized shifts
-
V. Druskin, L. Knizhnerman, and M. Zaslavsky (2009). Solution of large scale evolutionary problems using rational Krylov subspaces with optimized shifts. SIAM J. Sci. Comp. 31:3760-3780.
-
(2009)
SIAM J. Sci. Comp.
, vol.31
, pp. 3760-3780
-
-
Druskin, V.1
Knizhnerman, L.2
Zaslavsky, M.3
-
30
-
-
78149325330
-
On adaptive choice of shifts in rational Krylov subspace reduction of evolutionary problems
-
V. Druskin, C. Lieberman, and M. Zaslavsky (2010). On adaptive choice of shifts in rational Krylov subspace reduction of evolutionary problems. SIAM J. Sci. Comput. 32:2485-2496.
-
(2010)
SIAM J. Sci. Comput.
, vol.32
, pp. 2485-2496
-
-
Druskin, V.1
Lieberman, C.2
Zaslavsky, M.3
-
31
-
-
77956661116
-
A quadrature based method for evaluating exponential-type functions for exponential methods
-
M. Lopez-Fernandez (2010). A quadrature based method for evaluating exponential-type functions for exponential methods. BIT Numer. Math. 50:631-655.
-
(2010)
BIT Numer. Math.
, vol.50
, pp. 631-655
-
-
Lopez-Fernandez, M.1
-
32
-
-
84858800367
-
On convergence of Krylov subspace approximations of timeinvariant self-adjoint dynamical systems
-
V. Druskin, M. Zaslavsky (2012). On convergence of Krylov subspace approximations of timeinvariant self-adjoint dynamical systems. Linear Algebra Appl. 436:3883-3903.
-
(2012)
Linear Algebra Appl.
, vol.436
, pp. 3883-3903
-
-
Druskin, V.1
Zaslavsky, M.2
-
35
-
-
33846829563
-
Numerical range and numerical calculus in Hilbert space
-
M. Crouzeix (2007). Numerical range and numerical calculus in Hilbert space. J. Functional Analysis 244:668-690.
-
(2007)
J. Functional Analysis
, vol.244
, pp. 668-690
-
-
Crouzeix, M.1
|