메뉴 건너뛰기




Volumn 34, Issue 5, 2013, Pages 539-556

A note on krylov methods for fractional evolution problems

Author keywords

Fractional differential equations; Initial value problems; Krylov subspace methods; Mittag Leffler functions

Indexed keywords

CONVERGENCE PROPERTIES; DIFFERENTIAL PROBLEMS; EVOLUTION PROBLEM; FRACTIONAL DIFFERENTIAL EQUATIONS; KRYLOV SUB SPACES; KRYLOV SUBSPACE METHOD; MITTAG-LEFFLER FUNCTIONS; RATIONAL APPROXIMATIONS;

EID: 84876259043     PISSN: 01630563     EISSN: 15322467     Source Type: Journal    
DOI: 10.1080/01630563.2012.748669     Document Type: Article
Times cited : (12)

References (35)
  • 2
    • 81555222614 scopus 로고    scopus 로고
    • On the convergence of Krylov subspace methods for matrix Mittag-Leffler functions
    • I. Moret and P. Novati (2011). On the convergence of Krylov subspace methods for matrix Mittag-Leffler functions. SIAM J. Numer. Anal. 49:2144-2164.
    • (2011) SIAM J. Numer. Anal. , vol.49 , pp. 2144-2164
    • Moret, I.1    Novati, P.2
  • 3
    • 78751643802 scopus 로고    scopus 로고
    • On the use of matrix functions for fractional partial differential equations
    • R. Garrappa and M. Popolizio (2011). On the use of matrix functions for fractional partial differential equations. Math. Comput. Simulation 81:1045-1056.
    • (2011) Math. Comput. Simulation , vol.81 , pp. 1045-1056
    • Garrappa, R.1    Popolizio, M.2
  • 4
    • 79961015107 scopus 로고    scopus 로고
    • Generalized exponential time differencing methods for fractional order problems
    • R. Garrappa and M. Popolizio (2011). Generalized exponential time differencing methods for fractional order problems. Comput. Math. Appl. 62:876-890.
    • (2011) Comput. Math. Appl. , vol.62 , pp. 876-890
    • Garrappa, R.1    Popolizio, M.2
  • 5
    • 84865707794 scopus 로고    scopus 로고
    • Resolvent Krylov subspace approximation to operator functions
    • V. Grimm (2012). Resolvent Krylov subspace approximation to operator functions. BIT Numer. Math. 52:639-659.
    • (2012) BIT Numer. Math. , vol.52 , pp. 639-659
    • Grimm, V.1
  • 6
    • 8144228833 scopus 로고    scopus 로고
    • RD-rational approximations of the matrix exponential
    • I. Moret and P. Novati (2004). RD-rational approximations of the matrix exponential. BIT Numer. Math. 44:595-615.
    • (2004) BIT Numer. Math. , vol.44 , pp. 595-615
    • Moret, I.1    Novati, P.2
  • 7
    • 33646928736 scopus 로고    scopus 로고
    • Preconditioning Lanczos approximations to the matrix exponential
    • J. van den Eshof and M. Hochbruck (2006). Preconditioning Lanczos approximations to the matrix exponential. SIAM J. Sci. Comp. 27:1438-1457.
    • (2006) SIAM J. Sci. Comp. , vol.27 , pp. 1438-1457
    • Eshof Den J.Van1    Hochbruck, M.2
  • 10
    • 0034407032 scopus 로고    scopus 로고
    • Numerical solution of constant coefficient linear delay differential equations as abstract Cauchy problems
    • A. Bellen and S. Maset (2000). Numerical solution of constant coefficient linear delay differential equations as abstract Cauchy problems. Numer. Math. 84:351-374.
    • (2000) Numer. Math. , vol.84 , pp. 351-374
    • Bellen, A.1    Maset, S.2
  • 11
    • 78649915752 scopus 로고    scopus 로고
    • Approximation of semigroups and related operator functions by resolvent series
    • V. Grimm and M. Gugat (2010). Approximation of semigroups and related operator functions by resolvent series. SIAM J. Numer. Anal. 48:1826-1845.
    • (2010) SIAM J. Numer. Anal. , vol.48 , pp. 1826-1845
    • Grimm, V.1    Gugat, M.2
  • 13
    • 0347799731 scopus 로고    scopus 로고
    • On Krylov subspace approximation to the matrix exponential operator
    • M. Hochbruck and C. Lubich (1997). On Krylov subspace approximation to the matrix exponential operator. SIAM J. Numer. Anal. 34:1911-1925.
    • (1997) SIAM J. Numer. Anal. , vol.34 , pp. 1911-1925
    • Hochbruck, M.1    Lubich, C.2
  • 16
    • 77956153506 scopus 로고    scopus 로고
    • The analysis of fractional differential equations
    • Springer, Berlin
    • K. Diethelm (2010). The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics n. 2004, Springer, Berlin.
    • (2010) Lecture Notes in Mathematics N. 2004
    • Diethelm, K.1
  • 17
    • 55349106156 scopus 로고    scopus 로고
    • Numerical algorithm for calculating the generalized Mittag-Leffler function
    • H. J. Seybold and R. Hilfer (2008). Numerical algorithm for calculating the generalized Mittag-Leffler function. SIAM J. Numer. Anal. 47:69-88.
    • (2008) SIAM J. Numer. Anal. , vol.47 , pp. 69-88
    • Seybold, H.J.1    Hilfer, R.2
  • 18
    • 84879234882 scopus 로고    scopus 로고
    • Evaluation of generalized Mittag-Leffler functions on the real line
    • DOI: 10.1007/s10444-012-9274-z
    • R. Garrappa and M. Popolizio (2012). Evaluation of generalized Mittag-Leffler functions on the real line. Adv. Comput. Math. DOI: 10.1007/s10444-012-9274-z.
    • (2012) Adv. Comput. Math
    • Garrappa, R.1    Popolizio, M.2
  • 19
    • 0026818185 scopus 로고
    • Analysis of some Krylov subspace approximations to the matrix exponential operator
    • Y. Saad (1992). Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29:209-228.
    • (1992) SIAM J. Numer. Anal. , vol.29 , pp. 209-228
    • Saad, Y.1
  • 20
    • 0000446481 scopus 로고
    • Two polynomial methods for calculating functions of symmetric matrices
    • V. Druskin and L. Knizhnerman (1989). Two polynomial methods for calculating functions of symmetric matrices. Comput. Maths. Math. Phys. 29:112-121.
    • (1989) Comput. Maths. Math. Phys. , vol.29 , pp. 112-121
    • Druskin, V.1    Knizhnerman, L.2
  • 22
    • 70449371467 scopus 로고    scopus 로고
    • Error estimates for polynomial Krylov approximations to matrix functions
    • F. Diele, I. Moret and S. Ragni (2008). Error estimates for polynomial Krylov approximations to matrix functions. SIAM J. Matrix Analysis Appl. 30:1546-156.
    • (2008) SIAM J. Matrix Analysis Appl. , vol.30 , pp. 1546-156
    • Diele, F.1    Moret, I.2    Ragni, S.3
  • 23
    • 34248578148 scopus 로고    scopus 로고
    • On RD-rational Krylov approximations to the core functions of exponential integrators
    • I. Moret (2007). On RD-rational Krylov approximations to the core functions of exponential integrators. Numerical Linear Algebra with Applications. 14:445-457.
    • (2007) Numerical Linear Algebra with Applications. , vol.14 , pp. 445-457
    • Moret, I.1
  • 24
    • 49749108595 scopus 로고    scopus 로고
    • Acceleration techniques for approximating the matrix exponential operator
    • M. Popolizio and V. Simoncini (2008). Acceleration techniques for approximating the matrix exponential operator. SIAM J. Matrix Analysis and Appl. 30:657-683.
    • (2008) SIAM J. Matrix Analysis and Appl. , vol.30 , pp. 657-683
    • Popolizio, M.1    Simoncini, V.2
  • 25
    • 84856259492 scopus 로고    scopus 로고
    • Using the restricted-denominator rational arnoldi method for exponential integrators
    • P. Novati (2011). Using the Restricted-Denominator rational Arnoldi method for exponential integrators. SIAM J. Matrix Anal. and Appl. 32:1537-1558.
    • (2011) SIAM J. Matrix Anal. and Appl. , vol.32 , pp. 1537-1558
    • Novati, P.1
  • 26
    • 84876204356 scopus 로고    scopus 로고
    • Rational krylov methods in exponential integrators for european option pricing
    • S. Ragni (To appear). Rational Krylov methods in exponential integrators for European option pricing. Numer. Linear Alg. Appl. Preprint.
    • Numer. Linear Alg. Appl. Preprint
    • Ragni, S.1
  • 27
    • 84890186942 scopus 로고    scopus 로고
    • The restarted shift-and-invert Krylov method for matrix functions
    • DOI: 10.1002/nla
    • I. Moret and M. Popolizio (2012). The restarted shift-and-invert Krylov method for matrix functions. Numerical Linear Algebra with Applications. DOI: 10.1002/nla.
    • (2012) Numerical Linear Algebra with Applications
    • Moret, I.1    Popolizio, M.2
  • 28
    • 34548162562 scopus 로고    scopus 로고
    • Parabolic and hyperbolic contours for computing the Bromwich integral
    • J. A. C. Weideman and L. N. Trefethen (2007). Parabolic and hyperbolic contours for computing the Bromwich integral. Math. Comp. 78:1341-1358.
    • (2007) Math. Comp. , vol.78 , pp. 1341-1358
    • Weideman, J.A.C.1    Trefethen, L.N.2
  • 29
    • 77951568661 scopus 로고    scopus 로고
    • Solution of large scale evolutionary problems using rational Krylov subspaces with optimized shifts
    • V. Druskin, L. Knizhnerman, and M. Zaslavsky (2009). Solution of large scale evolutionary problems using rational Krylov subspaces with optimized shifts. SIAM J. Sci. Comp. 31:3760-3780.
    • (2009) SIAM J. Sci. Comp. , vol.31 , pp. 3760-3780
    • Druskin, V.1    Knizhnerman, L.2    Zaslavsky, M.3
  • 30
    • 78149325330 scopus 로고    scopus 로고
    • On adaptive choice of shifts in rational Krylov subspace reduction of evolutionary problems
    • V. Druskin, C. Lieberman, and M. Zaslavsky (2010). On adaptive choice of shifts in rational Krylov subspace reduction of evolutionary problems. SIAM J. Sci. Comput. 32:2485-2496.
    • (2010) SIAM J. Sci. Comput. , vol.32 , pp. 2485-2496
    • Druskin, V.1    Lieberman, C.2    Zaslavsky, M.3
  • 31
    • 77956661116 scopus 로고    scopus 로고
    • A quadrature based method for evaluating exponential-type functions for exponential methods
    • M. Lopez-Fernandez (2010). A quadrature based method for evaluating exponential-type functions for exponential methods. BIT Numer. Math. 50:631-655.
    • (2010) BIT Numer. Math. , vol.50 , pp. 631-655
    • Lopez-Fernandez, M.1
  • 32
    • 84858800367 scopus 로고    scopus 로고
    • On convergence of Krylov subspace approximations of timeinvariant self-adjoint dynamical systems
    • V. Druskin, M. Zaslavsky (2012). On convergence of Krylov subspace approximations of timeinvariant self-adjoint dynamical systems. Linear Algebra Appl. 436:3883-3903.
    • (2012) Linear Algebra Appl. , vol.436 , pp. 3883-3903
    • Druskin, V.1    Zaslavsky, M.2
  • 35
    • 33846829563 scopus 로고    scopus 로고
    • Numerical range and numerical calculus in Hilbert space
    • M. Crouzeix (2007). Numerical range and numerical calculus in Hilbert space. J. Functional Analysis 244:668-690.
    • (2007) J. Functional Analysis , vol.244 , pp. 668-690
    • Crouzeix, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.