메뉴 건너뛰기




Volumn 62, Issue 3, 2013, Pages 435-450

Ordinal latent variable models and their application in the study of newly licensed teenage drivers

Author keywords

Driving study; Latent class modelling; Monte Carlo expectation maximization

Indexed keywords


EID: 84876137509     PISSN: 00359254     EISSN: 14679876     Source Type: Journal    
DOI: 10.1111/j.1467-9876.2012.01065.x     Document Type: Article
Times cited : (8)

References (19)
  • 2
    • 0036712328 scopus 로고    scopus 로고
    • A latent autoregressive model for longitudinal binary data subject to informative missingness
    • Albert, P. S., Follman, D. A., Wang, S. A. and Suh, E. B. (2002) A latent autoregressive model for longitudinal binary data subject to informative missingness. Biometrics, 58, 631-642.
    • (2002) Biometrics , vol.58 , pp. 631-642
    • Albert, P.S.1    Follman, D.A.2    Wang, S.A.3    Suh, E.B.4
  • 3
    • 77958057320 scopus 로고    scopus 로고
    • Latent Markov model for longitudinal binary data: an application to the performance evaluation of nursing homes
    • Bartolucci, F., Lupparelli, M. and Montanari, G. (2009) Latent Markov model for longitudinal binary data: an application to the performance evaluation of nursing homes. Ann. Appl. Statist., 3, 611-636.
    • (2009) Ann. Appl. Statist. , vol.3 , pp. 611-636
    • Bartolucci, F.1    Lupparelli, M.2    Montanari, G.3
  • 4
    • 34547679632 scopus 로고    scopus 로고
    • A class of latent Markov models for capture-recapture data allowing for time heterogeneity, and behavior effects
    • Bartolucci, F. and Pennoni, F. (2007) A class of latent Markov models for capture-recapture data allowing for time heterogeneity, and behavior effects. Biometrics, 63, 568-578.
    • (2007) Biometrics , vol.63 , pp. 568-578
    • Bartolucci, F.1    Pennoni, F.2
  • 5
    • 0000353178 scopus 로고
    • A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
    • Baum, L. E., Petrie, T., Soules, G. and Weiss, N. (1970) A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Statist., 41, 164-171.
    • (1970) Ann. Math. Statist. , vol.41 , pp. 164-171
    • Baum, L.E.1    Petrie, T.2    Soules, G.3    Weiss, N.4
  • 6
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (with discussion)
    • Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977) Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. R. Statist. Soc. B, 39, 1-38.
    • (1977) J. R. Statist. Soc. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 8
    • 1142275381 scopus 로고    scopus 로고
    • Binary latent variable modelling and its application in the study of air pollution in Hong Kong
    • Hu, Z. G., Wong, C. M., Thach, T. Q., Lam, T. H. and Hedley, A. H. (2004) Binary latent variable modelling and its application in the study of air pollution in Hong Kong. Statist. Med., 23, 667-684.
    • (2004) Statist. Med. , vol.23 , pp. 667-684
    • Hu, Z.G.1    Wong, C.M.2    Thach, T.Q.3    Lam, T.H.4    Hedley, A.H.5
  • 10
    • 0031507509 scopus 로고    scopus 로고
    • Latent variable models for teratogenesis using multiple binary outcomes
    • Legler, J. M. and Ryan, L. M. (1997) Latent variable models for teratogenesis using multiple binary outcomes. J. Am. Statist. Ass., 92, 13-20.
    • (1997) J. Am. Statist. Ass. , vol.92 , pp. 13-20
    • Legler, J.M.1    Ryan, L.M.2
  • 12
    • 0001044972 scopus 로고
    • Find the observed information matrix when using the EM algorithm
    • Louis, T. A. (1982) Find the observed information matrix when using the EM algorithm. J. R. Statist. Soc. B, 44, 226-233.
    • (1982) J. R. Statist. Soc. B , vol.44 , pp. 226-233
    • Louis, T.A.1
  • 14
    • 0031479575 scopus 로고    scopus 로고
    • Maximum likelihood algorithms for generalized linear models
    • McCulloch, C. E. (1997) Maximum likelihood algorithms for generalized linear models. J. Am. Statist. Ass., 92, 162-170.
    • (1997) J. Am. Statist. Ass. , vol.92 , pp. 162-170
    • McCulloch, C.E.1
  • 15
    • 85081454077 scopus 로고    scopus 로고
    • National Highway Traffic Safety Administration. Traffic safety facts 2000: young drivers. DOT HS 809 336. National Highway Traffic Safety Administration, Washington DC
    • National Highway Traffic Safety Administration (2000)Traffic safety facts 2000: young drivers. DOT HS 809 336. National Highway Traffic Safety Administration, Washington DC.
    • (2000)
  • 16
    • 0013909964 scopus 로고
    • An item analysis which takes individual differences into account
    • Rasch, G. (1966) An item analysis which takes individual differences into account. Br. J. Math. Statist. Psychol., 19, 48-57.
    • (1966) Br. J. Math. Statist. Psychol. , vol.19 , pp. 48-57
    • Rasch, G.1
  • 17
    • 84863304598 scopus 로고    scopus 로고
    • R Development Core Team Vienna: R Foundation for Statistical Computing.
    • R Development Core Team (2009) R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
    • (2009) R: a Language and Environment for Statistical Computing
  • 18
    • 26944498996 scopus 로고    scopus 로고
    • The observed effects of teenage passengers on the risky driving behavior of teenage drivers
    • Simons-Morton, B., Lerner, N. and Singler, J. (2005) The observed effects of teenage passengers on the risky driving behavior of teenage drivers. Accid. Anal. Prevn, 37, 973-982.
    • (2005) Accid. Anal. Prevn , vol.37 , pp. 973-982
    • Simons-Morton, B.1    Lerner, N.2    Singler, J.3
  • 19
    • 0024204207 scopus 로고
    • Markov regression models for time series: a quasi-likelihood approach
    • Zeger, S. L. and Qaqish, B. (1988) Markov regression models for time series: a quasi-likelihood approach. Biometrics, 44, 1019-1031.
    • (1988) Biometrics , vol.44 , pp. 1019-1031
    • Zeger, S.L.1    Qaqish, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.