메뉴 건너뛰기




Volumn , Issue , 2013, Pages 304-328

Latent class/profile analysis

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84876038472     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.4324/9780203108550     Document Type: Chapter
Times cited : (32)

References (60)
  • 1
    • 33845722419 scopus 로고
    • Factor analysis and aic
    • Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52, 317–332.
    • (1987) Psychometrika , vol.52 , pp. 317-332
    • Akaike, H.1
  • 2
    • 0035009605 scopus 로고    scopus 로고
    • Latent class modeling approaches for assessing diagnostic error without a gold standard: With applications to p53 immunohistochemical assays in bladder tumors
    • U.S. National Cancer Institute (NCI) Bladder Tumor Marker Network
    • Albert, P. S., McShane, L. M., Shih, J. H., & the U.S. National Cancer Institute (NCI) Bladder Tumor Marker Network (2001). Latent class modeling approaches for assessing diagnostic error without a gold standard: With applications to p53 immunohistochemical assays in bladder tumors. Biometrics, 57(2), 610–619.
    • (2001) Biometrics , vol.57 , Issue.2 , pp. 610-619
    • Albert, P.S.1    McShane, L.M.2    Shih, J.H.3
  • 3
    • 42949177287 scopus 로고    scopus 로고
    • Multilevel mixture models
    • C. R. Hancock & K. M. Samuelsen (Eds.), Charlotte, NC: Information Age
    • Asparouhov T., & Muthén, B. (2007). Multilevel mixture models. In C. R. Hancock & K. M. Samuelsen (Eds.), Advances in latent variable mixture models (pp. 27–51). Charlotte, NC: Information Age.
    • (2007) Advances in Latent Variable Mixture Models , pp. 27-51
    • Asparouhov, T.1    Muthén, B.2
  • 5
    • 13844253503 scopus 로고    scopus 로고
    • Estimating latent structure models with categorical variables: One-step versus three-step estimators
    • Bolck, A., Croon, M. A., & Hagenaars, J. A. P. (2004). Estimating latent structure models with categorical variables: One-step versus three-step estimators. Political Analysis, 12, 3–27.
    • (2004) Political Analysis , vol.12 , pp. 3-27
    • Bolck, A.1    Croon, M.A.2    Hagenaars, J.A.P.3
  • 6
    • 34250108028 scopus 로고
    • Model selection and akaike’s information criterion (aic): The general theory and its analytical extensions
    • Bozdogan, H. (1987). Model selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52, 345–370.
    • (1987) Psychometrika , vol.52 , pp. 345-370
    • Bozdogan, H.1
  • 7
    • 0030351528 scopus 로고    scopus 로고
    • An entropy criterion for assessing the number of clusters in a mixture model
    • Celeux, G., & Soromenho, G. (1996). An entropy criterion for assessing the number of clusters in a mixture model. Journal of Classifi cation, 13, 195–212.
    • (1996) Journal of Classifi Cation , vol.13 , pp. 195-212
    • Celeux, G.1    Soromenho, G.2
  • 9
    • 0001476786 scopus 로고
    • Some latent structure models for the analysis of likert-type data
    • Clogg, C. C. (1979). Some latent structure models for the analysis of Likert-type data. Social Science Research, 8, 287–301.
    • (1979) Social Science Research , vol.8 , pp. 287-301
    • Clogg, C.C.1
  • 10
    • 84950944685 scopus 로고
    • Latent structure analysis of a set of multi-dimensional contingency tables
    • Clogg, C. C., & Goodman, L. A. (1984). Latent structure analysis of a set of multi-dimensional contingency tables. Journal of the American Statistical Association, 79, 762–771.
    • (1984) Journal of the American Statistical Association , vol.79 , pp. 762-771
    • Clogg, C.C.1    Goodman, L.A.2
  • 13
    • 0001241105 scopus 로고
    • A probabilistic model for validation of behavioral hierarchies
    • Dayton, C. M., & Macready, G. B. (1976). A probabilistic model for validation of behavioral hierarchies. Psychometrika, 41, 189–204.
    • (1976) Psychometrika , vol.41 , pp. 189-204
    • Dayton, C.M.1    Macready, G.B.2
  • 15
    • 0141853328 scopus 로고    scopus 로고
    • Latent class analysis of survey data dealing with academic dishonesty
    • J. Rost & R. Langeheine (Eds.), Münster, Germany, and New York, NY: Waxmann
    • Dayton, C. M., & Scheers, N. J. (1997). Latent class analysis of survey data dealing with academic dishonesty. In J. Rost & R. Langeheine (Eds.) Application of latent trait and latent class models in the social sciences (pp. 172–180). Münster, Germany, and New York, NY: Waxmann.
    • (1997) Application of Latent Trait and Latent Class Models in the Social Sciences , pp. 172-180
    • Dayton, C.M.1    Scheers, N.J.2
  • 16
    • 78651337307 scopus 로고    scopus 로고
    • Conducting confi rmatory latent class analysis using mplus
    • Finch, W. H., & Bronk, K. C. (2011). Conducting confi rmatory latent class analysis using Mplus. Structural Equation Modeling, 18, 132–151.
    • (2011) Structural Equation Modeling , vol.18 , pp. 132-151
    • Finch, W.H.1    Bronk, K.C.2
  • 17
    • 42049110852 scopus 로고    scopus 로고
    • Examining contingent discrete change over time with associative latent transition analysis
    • G. R. Hancock, & K. M. Samuelsen (Eds.), Charlotte, NC: Information Age
    • Flaherty, B. P. (2007). Examining contingent discrete change over time with associative latent transition analysis. In G. R. Hancock, & K. M. Samuelsen (Eds.), Advances in Latent Variable Mixture Models (pp. 299–316). Charlotte, NC: Information Age.
    • (2007) Advances in Latent Variable Mixture Models , pp. 299-316
    • Flaherty, B.P.1
  • 20
    • 62949221387 scopus 로고    scopus 로고
    • Avoiding boundary estimates in latent class analysis by bayesian posterior mode estimation
    • Galindo-Garre, F., & Vermunt, J. K. (2006). Avoiding boundary estimates in latent class analysis by Bayesian posterior mode estimation. Behaviormetrika, 33, 43–59.
    • (2006) Behaviormetrika , vol.33 , pp. 43-59
    • Galindo-Garre, F.1    Vermunt, J.K.2
  • 22
    • 85041975304 scopus 로고
    • Exploratory latent structure analysis using both identifi able and unidentifi - able models
    • Goodman, L. A. (1974). Exploratory latent structure analysis using both identifi able and unidentifi - able models. Biometrika, 61, 215–231.
    • (1974) Biometrika , vol.61 , pp. 215-231
    • Goodman, L.A.1
  • 24
    • 77951658721 scopus 로고    scopus 로고
    • Multilevel latent class analysis: An application of adolescent smoking typologies with individual and contextual predictors
    • Henry, K. L., & Muthén, B. (2010). Multilevel latent class analysis: An application of adolescent smoking typologies with individual and contextual predictors. Structural Equation Modeling, 17(2): 193–215. doi: 10.1080/10705511003659342
    • (2010) Structural Equation Modeling , vol.17 , Issue.2 , pp. 193-215
    • Henry, K.L.1    Muthén, B.2
  • 25
    • 35748948948 scopus 로고    scopus 로고
    • Empirically derived subtypes of adolescent depression: Latent profi le analysis of co-occurring symptoms in the treatment for adolescents with depression study (tads)
    • Herman, K. C., Ostramder, R., Walkup, J. T., Silva, S. G., & March, J. S. (2007). Empirically derived subtypes of adolescent depression: Latent profi le analysis of co-occurring symptoms in the Treatment for Adolescents with Depression Study (TADS). Journal of Counseling and Clinical Psychology, 75, 715–728. doi: 10.1037/0022-006X.75.5.716
    • (2007) Journal of Counseling and Clinical Psychology , vol.75 , pp. 715-728
    • Herman, K.C.1    Ostramder, R.2    Walkup, J.T.3    Silva, S.G.4    March, J.S.5
  • 26
    • 79952007506 scopus 로고    scopus 로고
    • Identifying patterns of eating and physical activity in children: A latent class analysis of obesity risk
    • Huh, J., Riggs, N. R., Spruijt-Metz, D., Chou, C-P., Huang, Z., & Pentz, M. (2011). Identifying patterns of eating and physical activity in children: A latent class analysis of obesity risk. Obesity, 19, 652–658.
    • (2011) Obesity , vol.19 , pp. 652-658
    • Huh, J.1    Riggs, N.R.2    Spruijt-Metz, D.3    Chou, C.-P.4    Huang, Z.5    Pentz, M.6
  • 28
    • 0031529437 scopus 로고    scopus 로고
    • Statistical test of the rule assessment methodology by latent class analysis
    • Jansen, B. R. J., & van der Maas, H. L. J. (1997). Statistical test of the rule assessment methodology by latent class analysis. Developmental Review, 17, 321–357.
    • (1997) Developmental Review , vol.17 , pp. 321-357
    • Jansen, B.R.J.1    Van Der Maas, H.L.J.2
  • 29
    • 84921405948 scopus 로고    scopus 로고
    • Testing for measurement invariance with latent class analysis
    • E. Davidov, P. Schmidt, & J. Billiet (Eds.), New York, NY: Taylor & Francis Group/Routledge
    • Kankaras, M., Moors, G. B. D., & Vermunt, J. K. (2010). Testing for measurement invariance with latent class analysis. In E. Davidov, P. Schmidt, & J. Billiet (Eds.), Cross-cultural analysis. Methods and applications (pp. 359–384). New York, NY: Taylor & Francis Group/Routledge.
    • (2010) Cross-Cultural Analysis. Methods and Applications , pp. 359-384
    • Kankaras, M.1    Moors, G.B.D.2    Vermunt, J.K.3
  • 30
    • 0031798932 scopus 로고    scopus 로고
    • The structure of psychosis: Latent class analysis of probands from the roscommon family study
    • Kendler, K. S., Karkowski, L. M., & Walsh, D. (1998). The structure of psychosis: Latent class analysis of probands from the Roscommon Family Study. Archives of General Psychiatry, 55, 492–499.
    • (1998) Archives of General Psychiatry , vol.55 , pp. 492-499
    • Kendler, K.S.1    Karkowski, L.M.2    Walsh, D.3
  • 32
    • 0001918459 scopus 로고
    • Semiparametric estimation in the rasch model and related exponential response models, including a simple latent class model for item analysis
    • Lindsay, B., Clogg, C. C, (1991). Semiparametric estimation in the Rasch model and related exponential response models, including a simple latent class model for item analysis. Journal of the American Statistical Association, 86, 96–107.
    • (1991) Journal of the American Statistical Association , vol.86 , pp. 96-107
    • Lindsay, B.1    Clogg, C.C.2
  • 33
    • 0038183179 scopus 로고    scopus 로고
    • Testing the number of components in a normal mixture
    • Lo, Y., Mendell, N., & Rubin, D. (2001). Testing the number of components in a normal mixture. Biometrika, 88, 767–778.
    • (2001) Biometrika , vol.88 , pp. 767-778
    • Lo, Y.1    Mendell, N.2    Rubin, D.3
  • 35
    • 3042837131 scopus 로고    scopus 로고
    • Basic concepts and procedures in single-and multiple-group latent class analysis
    • J. A. Hagenaars & A. L. McCutcheon (Eds.), Cambridge, England: Cambridge University Press
    • McCutcheon, A. L. (2002). Basic concepts and procedures in single-and multiple-group latent class analysis. In J. A. Hagenaars & A. L. McCutcheon (Eds.), Applied latent class analysis (pp. 57– 88). Cambridge, England: Cambridge University Press.
    • (2002) Applied Latent Class Analysis (Pp. 57– , pp. 88
    • McCutcheon, A.L.1
  • 37
    • 0002031816 scopus 로고    scopus 로고
    • Latent variable mixture modeling
    • G. A. Marcoulides & R. E. Schumacker (Eds.), Mahwah, NJ: Erlbaum
    • Muthén, B. O. (2001). Latent variable mixture modeling. In G. A. Marcoulides & R. E. Schumacker (Eds.), New developments and techniques in structural equation modeling (pp. 1–34). Mahwah, NJ: Erlbaum.
    • (2001) New Developments and Techniques in Structural Equation Modeling , pp. 1-34
    • Muthén, B.O.1
  • 38
    • 42049117441 scopus 로고    scopus 로고
    • Latent variable hybrids: Overview of old and new models
    • G. R. Hancock, & K. M. Samuelsen (Eds.), Charlotte, NC: Information Age
    • Muthén, B. O. (2007). Latent variable hybrids: Overview of old and new models. In G. R. Hancock, & K. M. Samuelsen (Eds.), Advances in latent variable mixture models (pp. 1–24). Charlotte, NC: Information Age.
    • (2007) Advances in Latent Variable Mixture Models , pp. 1-24
    • Muthén, B.O.1
  • 39
    • 50249132808 scopus 로고    scopus 로고
    • Growth mixture analysis: Models with non-gaussian random effects
    • G. Fitzmaurice, M. Davidian, G. Verbeke, & G. Molenberghs (Eds.), Boca Raton, FL: Chapman & Hall/CRC Press
    • Muthén, B., & Asparouhov, T. (2006). Growth mixture analysis: Models with non-Gaussian random effects. In G. Fitzmaurice, M. Davidian, G. Verbeke, & G. Molenberghs (Eds.), Advances in longitudinal data analysis (pp. 143–166). Boca Raton, FL: Chapman & Hall/CRC Press.
    • (2006) Advances in Longitudinal Data Analysis , pp. 143-166
    • Muthén, B.1    Asparouhov, T.2
  • 42
    • 77958052382 scopus 로고    scopus 로고
    • A latent profi le analysis of neighborhood recreation environments in relation to adolescent physical activity, sedentary time, and obesity
    • Norman, G. J., Adams, M. A., Kerr, J., Ryan, S., Frank, L. D., & Roesch, S. C. (2010). A latent profi le analysis of neighborhood recreation environments in relation to adolescent physical activity, sedentary time, and obesity. Journal of Public Health Management and Practice, 16, 411–419. doi: 10.1097/PHH.0b013e3181c60e92
    • (2010) Journal of Public Health Management and Practice , vol.16 , pp. 411-419
    • Norman, G.J.1    Adams, M.A.2    Kerr, J.3    Ryan, S.4    Frank, L.D.5    Roesch, S.C.6
  • 43
    • 36849091981 scopus 로고    scopus 로고
    • Deciding on the number of classes in latent class analysis and growth mixture modeling: A monte carlo simulation study
    • Nylund, K., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14(4), 535–569.
    • (2007) Structural Equation Modeling , vol.14 , Issue.4 , pp. 535-569
    • Nylund, K.1    Asparouhov, T.2    Muthén, B.O.3
  • 44
    • 0033255796 scopus 로고    scopus 로고
    • Parental infl uences on students’ aggressive behavior and weapon-carrying
    • Orpinas, P., Murray, N., & Kelder, S. (1999). Parental infl uences on students’ aggressive behavior and weapon-carrying. Health Education and Behavior, 26(6), 774–787.
    • (1999) Health Education and Behavior , vol.26 , Issue.6 , pp. 774-787
    • Orpinas, P.1    Murray, N.2    Kelder, S.3
  • 45
    • 70350648642 scopus 로고    scopus 로고
    • Reconsidering social capital: A latent class approach
    • Owen, A. L., & Videras, J. (2009). Reconsidering social capital: A latent class approach. Empirical Economics, 37(3), 555–582.
    • (2009) Empirical Economics , vol.37 , Issue.3 , pp. 555-582
    • Owen, A.L.1    Videras, J.2
  • 46
    • 33846465374 scopus 로고    scopus 로고
    • A latent profi le analysis of college students’ achievement goal orientation
    • Pastor, D. A., Barron, K. E., Miller, B. J., & Davis, S. L. (2007). A latent profi le analysis of college students’ achievement goal orientation. Contemporary Educational Psychology, 32, 8–47. doi: 10.1016/j.cedpsych.2006.10.003
    • (2007) Contemporary Educational Psychology , vol.32 , pp. 8-47
    • Pastor, D.A.1    Barron, K.E.2    Miller, B.J.3    Davis, S.L.4
  • 47
    • 0002582258 scopus 로고    scopus 로고
    • From workplace attitudes and values to a global pattern of nations: An application of latent class modeling
    • Pierce, C. L., & Osmond, C. P. (1999). From workplace attitudes and values to a global pattern of nations: An application of latent class modeling. Journal of Management, 25, 759–778.
    • (1999) Journal of Management , vol.25 , pp. 759-778
    • Pierce, C.L.1    Osmond, C.P.2
  • 48
    • 21144468655 scopus 로고
    • An empirical pooling approach for estimating marketing mix elasticities with pims data
    • Ramaswamy, V., Desarbo, W. S., Reibstein, D. J., & Robinson, W. T. (1993). An empirical pooling approach for estimating marketing mix elasticities with PIMS data. Marketing Science, 12(1), 103–124.
    • (1993) Marketing Science , vol.12 , Issue.1 , pp. 103-124
    • Ramaswamy, V.1    Desarbo, W.S.2    Reibstein, D.J.3    Robinson, W.T.4
  • 49
    • 33745188231 scopus 로고    scopus 로고
    • A latent class analysis of underage problem drinking: Evidence from a community sample of 16–20 year olds
    • Reboussin, B. A., Song, E.-Y., Shrestha, A., Lohman, K. K., & Wolfson, M. (2006). A latent class analysis of underage problem drinking: Evidence from a community sample of 16–20 year olds. Drug and Alcohol Dependence, 83, 199–209. doi: 10.1016/j.drugalcdep.2005.11.013
    • (2006) Drug and Alcohol Dependence , vol.83 , pp. 199-209
    • Reboussin, B.A.1    Song, E.-Y.2    Shrestha, A.3    Lohman, K.K.4    Wolfson, M.5
  • 51
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwartz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwartz, G.1
  • 52
    • 0000386489 scopus 로고
    • Application of model-selection criteria to some problems in multivariate analysis
    • Sclove, L. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52, 333–343.
    • (1987) Psychometrika , vol.52 , pp. 333-343
    • Sclove, L.1
  • 55
    • 0025287817 scopus 로고
    • Latent class analysis of diagnostic agreement
    • Uebersax, J., & Grove, W. M. (1990). Latent class analysis of diagnostic agreement. Statistics in Medicine, 9(5), 559–572.
    • (1990) Statistics in Medicine , vol.9 , Issue.5 , pp. 559-572
    • Uebersax, J.1    Grove, W.M.2
  • 56
    • 54949096940 scopus 로고    scopus 로고
    • Toward a quantitative typology of burglars: A latent profi le analysis of career offenders
    • Vaughn, M. G., DeLisi, M., Beaver, K. M., & Howard, M. O. (2008). Toward a quantitative typology of burglars: A latent profi le analysis of career offenders. Journal of Forensic Science, 53(6), 1387–1392.
    • (2008) Journal of Forensic Science , vol.53 , Issue.6 , pp. 1387-1392
    • Vaughn, M.G.1    Delisi, M.2    Beaver, K.M.3    Howard, M.O.4
  • 57
    • 9144238101 scopus 로고    scopus 로고
    • Multilevel latent class models
    • Vermunt, J. K. (2003). Multilevel latent class models. Sociological Methodology, 33, 213–239.
    • (2003) Sociological Methodology , vol.33 , pp. 213-239
    • Vermunt, J.K.1
  • 58
    • 36749017004 scopus 로고    scopus 로고
    • Latent class and fi nite mixture models for multilevel data sets
    • Vermunt, J. K. (2008). Latent class and fi nite mixture models for multilevel data sets. Statistical Methods in Medical Research, 17(1), 33–51.
    • (2008) Statistical Methods in Medical Research , vol.17 , Issue.1 , pp. 33-51
    • Vermunt, J.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.