메뉴 건너뛰기




Volumn 40, Issue 11, 2013, Pages 4585-4592

An application of Non-Parametric Predictive Inference on multi-class classification high-level-noise problems

Author keywords

Classification noise; Ensemble decision trees; Imprecise Dirichlet model; Imprecise probabilities; Information based uncertainty measures; Non Parametric Predictive Inference

Indexed keywords

CLASSIFICATION TASKS; EXPERIMENTAL STUDIES; IMPRECISE DIRICHLET MODEL; IMPRECISE PROBABILITIES; MULTI-CLASS CLASSIFICATION; MULTINOMIAL DATA; PREDICTIVE INFERENCES; UNCERTAINTY MEASURES;

EID: 84876031455     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2013.01.066     Document Type: Article
Times cited : (5)

References (26)
  • 1
    • 33750896257 scopus 로고    scopus 로고
    • Uncertainty measures on probability intervals from Imprecise Dirichlet model
    • J. Abellán Uncertainty measures on probability intervals from Imprecise Dirichlet model International Journal of General Systems 35 5 2006 509 528
    • (2006) International Journal of General Systems , vol.35 , Issue.5 , pp. 509-528
    • Abellán, J.1
  • 2
    • 84887815878 scopus 로고    scopus 로고
    • Ensembles of decision trees based on imprecise probabilities and uncertainty measues
    • in press
    • Abellán, J. (in press). Ensembles of decision trees based on imprecise probabilities and uncertainty measues. Information Fusion. http://dx.doi.org/10.1016/j.inffus.2012.02.003.
    • Information Fusion
    • Abellán, J.1
  • 3
    • 79952706236 scopus 로고    scopus 로고
    • Maximising entropy on the nonparametric predictive inference model for multinomial data
    • J. Abellán, R.M. Baker, and F.P.A. Coolen Maximising entropy on the nonparametric predictive inference model for multinomial data European Journal of Operational Research 212 1 2011 112 122
    • (2011) European Journal of Operational Research , vol.212 , Issue.1 , pp. 112-122
    • Abellán, J.1    Baker, R.M.2    Coolen, F.P.A.3
  • 4
    • 84889097229 scopus 로고    scopus 로고
    • Classification with decision trees from a nonparametric predictive inference perspective
    • (in press)
    • Abellán, J., Baker, R. M., Coolen, F. P. A., Crossman, R., & Masegosa, A. (in press). Classification with decision trees from a nonparametric predictive inference perspective. Computational Statistics and Data Analysis. http://dx.doi.org/10.1016/j.csda.2013.02.009.
    • Computational Statistics and Data Analysis
    • Abellán, J.1
  • 5
    • 84857650916 scopus 로고    scopus 로고
    • Bagging schemes on the presence of noise in classification
    • J. Abellán, and A. Masegosa Bagging schemes on the presence of noise in classification Expert Systems with Applications 39 8 2012 6827 6837
    • (2012) Expert Systems with Applications , vol.39 , Issue.8 , pp. 6827-6837
    • Abellán, J.1    Masegosa, A.2
  • 7
    • 0344012554 scopus 로고    scopus 로고
    • Building classification trees using the total uncertainty criterion
    • J. Abellán, and S. Moral Building classification trees using the total uncertainty criterion International Journal of Intelligent Systems 18 12 2003 1215 1225
    • (2003) International Journal of Intelligent Systems , vol.18 , Issue.12 , pp. 1215-1225
    • Abellán, J.1    Moral, S.2
  • 9
    • 16344368295 scopus 로고    scopus 로고
    • An introduction to the imprecise Dirichlet model for multinomial data
    • J.M. Bernard An introduction to the imprecise Dirichlet model for multinomial data International Journal of Approximate Reasoning 39 2005 123 150
    • (2005) International Journal of Approximate Reasoning , vol.39 , pp. 123-150
    • Bernard, J.M.1
  • 10
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Machine Learning 24 2 1996 123 140
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 11
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman Random forests Machine Learning 45 1 2001 5 32
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 13
    • 59749084289 scopus 로고    scopus 로고
    • A nonparamentric predictive alternative to the Imprecise Dirichlet model, the case of a known number of categories
    • F.P.A. Coolen, and T. Augustin A nonparamentric predictive alternative to the Imprecise Dirichlet model, the case of a known number of categories International Journal of Approximate Reasoning 50 2 2009 217 230
    • (2009) International Journal of Approximate Reasoning , vol.50 , Issue.2 , pp. 217-230
    • Coolen, F.P.A.1    Augustin, T.2
  • 14
    • 33747457181 scopus 로고    scopus 로고
    • Learning from multinomial data, a nonparemetric predictive alternative to the imprecise Dirichlet model
    • F.G. Cozman, R. Nau, T. Seidenfeld (Eds.) Pittsburg, Pennsylvania
    • Coolen, F. P. A., & Augustin, T. (2005). Learning from multinomial data, a nonparemetric predictive alternative to the imprecise Dirichlet model. In F.G. Cozman, R. Nau, T. Seidenfeld (Eds.), Proceeding of the 4th international symposium on imprecise probabilities and their applications, ISIPTA'05 (pp. 125-134). Pittsburg, Pennsylvania.
    • (2005) Proceeding of the 4th International Symposium on Imprecise Probabilities and Their Applications, ISIPTA'05 , pp. 125-134
    • Coolen, F.P.A.1    Augustin, T.2
  • 15
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparison of classifiers over multiple data sets
    • J. Demsar Statistical comparison of classifiers over multiple data sets Journal of Machine Learning Research 7 2006 1 30
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 16
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T.G. Dietterich An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization Machine Learning 40 2 2000 139 157
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 18
    • 0000099328 scopus 로고
    • Posterior distribution of percentiles, Bayes theorem for sampling from a population
    • B.M. Hill Posterior distribution of percentiles, Bayes theorem for sampling from a population Journal of the American Statistical Association 63 322 1968 677 691
    • (1968) Journal of the American Statistical Association , vol.63 , Issue.322 , pp. 677-691
    • Hill, B.M.1
  • 19
    • 0001483520 scopus 로고
    • De Finettis theorem, induction, and A(n) or Bayesian nonparametric predictive inference (with discussion)
    • Bernardo Oxford University Press pp. 211-241
    • B.M. Hill De Finettis theorem, induction, and A(n) or Bayesian nonparametric predictive inference (with discussion) Bernardo Bayesian statistics 3 1988 Oxford University Press pp. 211-241
    • (1988) Bayesian Statistics 3
    • Hill, B.M.1
  • 22
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J.R. Quinlan Induction of decision trees Machine Learning 1 1986 81 106
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 24
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • C.E. Shannon A mathematical theory of communication The Bell System Technical Journal 27 1948 379 423 pp. 623-656
    • (1948) The Bell System Technical Journal , vol.27 , Issue.379-423 , pp. 623-656
    • Shannon, C.E.1
  • 25
  • 26
    • 0004204162 scopus 로고    scopus 로고
    • 2nd ed. Practical machine learning tools and techniques Morgan Kaufmann San Francisco
    • I.H. Witten, and E. Frank Data mining 2nd ed. Practical machine learning tools and techniques 2005 Morgan Kaufmann San Francisco
    • (2005) Data Mining
    • Witten, I.H.1    Frank, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.