-
1
-
-
0001356905
-
Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits
-
Arnold V. I.: Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16, 319-361 (1966).
-
(1966)
Ann. Inst. Fourier
, vol.16
, pp. 319-361
-
-
Arnold, V.I.1
-
2
-
-
84857458962
-
Vanishing geodesic distance for the Riemannian metric with geodesic equation the KdV-equation
-
Bauer M., Bruveris M., Harms P., Michor P.: Vanishing geodesic distance for the Riemannian metric with geodesic equation the KdV-equation. Ann. Global Anal. Geom. 41, 461-472 (2012).
-
(2012)
Ann. Global Anal. Geom.
, vol.41
, pp. 461-472
-
-
Bauer, M.1
Bruveris, M.2
Harms, P.3
Michor, P.4
-
3
-
-
33847253064
-
On geodesic exponential maps of the Virasoro group
-
Constantin A., Kappeler T., Kolev B., Topalov P: On geodesic exponential maps of the Virasoro group. Ann. Global Anal. Geom. 31(2), 155-180 (2007).
-
(2007)
Ann. Global Anal. Geom.
, vol.31
, Issue.2
, pp. 155-180
-
-
Constantin, A.1
Kappeler, T.2
Kolev, B.3
Topalov, P.4
-
4
-
-
0242350978
-
Geodesic flow on the diffeomorphism group of the circle
-
Constantin A., Kolev B.: Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv. 78(4), 787-804 (2003).
-
(2003)
Comment. Math. Helv.
, vol.78
, Issue.4
, pp. 787-804
-
-
Constantin, A.1
Kolev, B.2
-
5
-
-
0001052255
-
Groups of diffeomorphisms and the motion of an incompressible fluid
-
Ebin D. G., Marsden J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. (2) 92, 102-163 (1970).
-
(1970)
Ann. Math. (2)
, vol.92
, pp. 102-163
-
-
Ebin, D.G.1
Marsden, J.2
-
6
-
-
84866317052
-
Well-posedness of higher dimensional Camassa-Holm equations
-
Gay-Balmaz F.: Well-posedness of higher dimensional Camassa-Holm equations. Bull. Transilv. Univ. Braşov Ser. III 2(51), 55-58 (2009).
-
(2009)
Bull. Transilv. Univ. Braşov Ser. III
, vol.2
, Issue.51
, pp. 55-58
-
-
Gay-Balmaz, F.1
-
9
-
-
85045532817
-
Some geometric evolution equations arising as geodesic equations on groups of diffeomorphisms including the Hamiltonian approach
-
In: Bove, A., Colombini, F., Del Santo, D. (eds.) of Progress in Nonlinear Differential Equations and their Applications Birkhäuser, Boston
-
Michor, P. W.: Some geometric evolution equations arising as geodesic equations on groups of diffeomorphisms including the Hamiltonian approach. In: Bove, A., Colombini, F., Del Santo, D. (eds.) Phase Space Analysis of Partial Differential Equations, volume 69 of Progress in Nonlinear Differential Equations and their Applications, pp. 133-215. Birkhäuser, Boston (2006).
-
(2006)
Phase Space Analysis of Partial Differential Equations
, vol.69
, pp. 133-215
-
-
Michor, P.W.1
-
10
-
-
29244431608
-
Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms
-
(electronic)
-
Michor, P. W., Mumford, D.: Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Doc. Math. 10, 217-245 (electronic) (2005).
-
(2005)
Doc. Math.
, vol.10
, pp. 217-245
-
-
Michor, P.W.1
Mumford, D.2
-
11
-
-
22444453467
-
Geometry of the Virasoro-Bott group
-
Michor P. W., Ratiu T.: Geometry of the Virasoro-Bott group. J. Lie Theory 8, 293-309 (1998).
-
(1998)
J. Lie Theory
, vol.8
, pp. 293-309
-
-
Michor, P.W.1
Ratiu, T.2
-
12
-
-
0039072121
-
Conjugate points in the Bott-Virasoro group and the KdV equation
-
Misiołek G.: Conjugate points in the Bott-Virasoro group and the KdV equation. Proc. Amer. Math. Soc. 125(3), 935-940 (1997).
-
(1997)
Proc. Amer. Math. Soc.
, vol.125
, Issue.3
, pp. 935-940
-
-
Misiołek, G.1
-
13
-
-
34250093431
-
Korteweg-de Vries superequations as an Euler equation
-
Ovsienko V. Y., Khesin B. A.: Korteweg-de Vries superequations as an Euler equation. Funct. Anal. Appl. 21, 329-331 (1987).
-
(1987)
Funct. Anal. Appl.
, vol.21
, pp. 329-331
-
-
Ovsienko, V.Y.1
Khesin, B.A.2
-
14
-
-
0001120168
-
The geometry of the KdV equation. Topological methods in quantum field theory (Trieste, 1990)
-
Segal G.: The geometry of the KdV equation. Topological methods in quantum field theory (Trieste, 1990). Internat. J. Modern Phys. A 6(16), 2859-2869 (1991).
-
(1991)
Internat. J. Modern Phys. A
, vol.6
, Issue.16
, pp. 2859-2869
-
-
Segal, G.1
|