메뉴 건너뛰기




Volumn 226, Issue 11, 2012, Pages 1808-1818

A support vector machine-based online tool condition monitoring for milling using sensor fusion and a genetic algorithm

Author keywords

genetic algorithm; milling; online tool condition monitoring; sensor fusion; support vector machine; Tool wear

Indexed keywords

ACOUSTIC EMISSION SIGNAL; BINARY DECISION TREES; ON-LINE TOOLS; SENSOR FUSION; SUPPORT VECTOR MACHINE MODELS; THREE AXIS ACCELEROMETERS; TOOL CONDITION MONITORING; TOOL WEAR;

EID: 84875879207     PISSN: 09544054     EISSN: 20412975     Source Type: Journal    
DOI: 10.1177/0954405412458047     Document Type: Article
Times cited : (56)

References (40)
  • 1
    • 0036640442 scopus 로고    scopus 로고
    • A summary of methods applied to tool condition monitoring in drilling
    • Jantunen E. A summary of methods applied to tool condition monitoring in drilling. Int J Mach Tools Mf. 2002 ; 42: 997-1010
    • (2002) Int J Mach Tools Mf , vol.42 , pp. 997-1010
    • Jantunen, E.1
  • 2
    • 0005007634 scopus 로고    scopus 로고
    • Optimal tool replacement based on the surface roughness in finish machining
    • Liu PH, Makis V, Jardine AKS. Optimal tool replacement based on the surface roughness in finish machining. IMA J Manage Math. 1998 ; 9: 223-239
    • (1998) IMA J Manage Math , vol.9 , pp. 223-239
    • Liu, P.H.1    Makis, V.2    Jardine, A.K.S.3
  • 3
    • 44649132057 scopus 로고    scopus 로고
    • Six Sigma: Definition and underlying theory
    • Schroeder RG, Linderman K, Liedtke C, et al. Six Sigma: definition and underlying theory. J Ops Mgmt. 2008 ; 26: 536-554
    • (2008) J Ops Mgmt , vol.26 , pp. 536-554
    • Schroeder, R.G.1    Linderman, K.2    Liedtke, C.3
  • 4
    • 17844408451 scopus 로고    scopus 로고
    • Application of Six Sigma methodology for process design
    • Sokovic M, Pavletic D, Fakin S. Application of Six Sigma methodology for process design. J Mater Process Technol. 2005 ; 162: 777-783
    • (2005) J Mater Process Technol , vol.162 , pp. 777-783
    • Sokovic, M.1    Pavletic, D.2    Fakin, S.3
  • 6
    • 56249103141 scopus 로고    scopus 로고
    • Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system
    • Aliustaoglu C, Ertunc HM, Ocak H. Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system. Mech Syst Signal Process. 2009 ; 23: 539-546
    • (2009) Mech Syst Signal Process , vol.23 , pp. 539-546
    • Aliustaoglu, C.1    Ertunc, H.M.2    Ocak, H.3
  • 7
    • 0033671505 scopus 로고    scopus 로고
    • Assessment of machining features for TCM in face milling using artificial neural network
    • Dutta RK, Kiran G, Paul S, et al. Assessment of machining features for TCM in face milling using artificial neural network. Proc IMechE, Part B: J Engineering Manufacture. 2000 ; 214: 535-546
    • (2000) Proc IMechE, Part B: J Engineering Manufacture , vol.214 , pp. 535-546
    • Dutta, R.K.1    Kiran, G.2    Paul, S.3
  • 9
    • 80051776544 scopus 로고    scopus 로고
    • Application of wavelet transform of acoustic emission and cutting force signals for tool condition monitoring in rough turning of Inconel 625
    • Jemielniak K, Kossakowska J, Urbański T. Application of wavelet transform of acoustic emission and cutting force signals for tool condition monitoring in rough turning of Inconel 625. Proc IMechE, Part B: J Engineering Manufacture. 2011 ; 225: 123-129
    • (2011) Proc IMechE, Part B: J Engineering Manufacture , vol.225 , pp. 123-129
    • Jemielniak, K.1    Kossakowska, J.2    Urbański, T.3
  • 10
    • 0033318194 scopus 로고    scopus 로고
    • On-line monitoring of flank wear in turning with multilayered feed-forward neural network
    • Liu Q, Altintas Y. On-line monitoring of flank wear in turning with multilayered feed-forward neural network. Int J Mach Tools Mf. 1999 ; 39: 1945-1959
    • (1999) Int J Mach Tools Mf , vol.39 , pp. 1945-1959
    • Liu, Q.1    Altintas, Y.2
  • 11
    • 2942562195 scopus 로고    scopus 로고
    • An industrial tool wear monitoring system for interrupted turning
    • Scheffer C, Heyns PS. An industrial tool wear monitoring system for interrupted turning. Mech Syst Sig Process. 2004 ; 18: 1219-1242
    • (2004) Mech Syst Sig Process , vol.18 , pp. 1219-1242
    • Scheffer, C.1    Heyns, P.S.2
  • 12
    • 0038580566 scopus 로고    scopus 로고
    • Development of a tool wear-monitoring system for hard turning
    • Scheffer C, Kratz H, Heyns PS, et al. Development of a tool wear-monitoring system for hard turning. Int J Mach Tools Mf. 2003 ; 43: 973-985
    • (2003) Int J Mach Tools Mf , vol.43 , pp. 973-985
    • Scheffer, C.1    Kratz, H.2    Heyns, P.S.3
  • 13
    • 0036784050 scopus 로고    scopus 로고
    • A computer algorithm for flank and crater wear estimation in CNC turning operations
    • Chungchoo C, Saini D. A computer algorithm for flank and crater wear estimation in CNC turning operations. Int J Mach Tools Mf. 2002 ; 42: 1465-1477
    • (2002) Int J Mach Tools Mf , vol.42 , pp. 1465-1477
    • Chungchoo, C.1    Saini, D.2
  • 14
    • 0031260756 scopus 로고    scopus 로고
    • Acoustic emission for tool condition monitoring in metal cutting
    • Ravindra HV, Srinivasa YG, Krishnamurthy R. Acoustic emission for tool condition monitoring in metal cutting. Wear. 1999 ; 212: 78-84
    • (1999) Wear , vol.212 , pp. 78-84
    • Ravindra, H.V.1    Srinivasa, Y.G.2    Krishnamurthy, R.3
  • 15
    • 56149124081 scopus 로고    scopus 로고
    • The monitoring of the turning tool wear process using an artificial neural network. Part 1: The experimental set-up and experimental results
    • Balan GC, Epureanu A. The monitoring of the turning tool wear process using an artificial neural network. Part 1: The experimental set-up and experimental results. Proc IMechE, Part B: J Engineering Manufacture. 2008 ; 222: 1241-1252
    • (2008) Proc IMechE, Part B: J Engineering Manufacture , vol.222 , pp. 1241-1252
    • Balan, G.C.1    Epureanu, A.2
  • 16
    • 0036464293 scopus 로고    scopus 로고
    • Tool condition monitoring using artificial intelligent methods
    • Balazinski M, Czogala E, Jemielnaik K, et al. Tool condition monitoring using artificial intelligent methods. Eng Appl Artif Intell. 2002 ; 15: 73-80
    • (2002) Eng Appl Artif Intell , vol.15 , pp. 73-80
    • Balazinski, M.1    Czogala, E.2    Jemielnaik, K.3
  • 17
    • 0033330465 scopus 로고    scopus 로고
    • Real-time implementation of on-line tool condition monitoring in turning
    • Ghasempoor A, Jeswiet J, Moore TN. Real-time implementation of on-line tool condition monitoring in turning. Int J Mach Tools Mf. 1999 ; 39: 1883-1902
    • (1999) Int J Mach Tools Mf , vol.39 , pp. 1883-1902
    • Ghasempoor, A.1    Jeswiet, J.2    Moore, T.N.3
  • 18
    • 0000058080 scopus 로고
    • Sensor fusion for monitoring machine tool conditions
    • Bahr B, Motavalli S, Arfi T. Sensor fusion for monitoring machine tool conditions. Int J Computer Integr Mf. 1979 ; 10: 314-323
    • (1979) Int J Computer Integr Mf , vol.10 , pp. 314-323
    • Bahr, B.1    Motavalli, S.2    Arfi, T.3
  • 19
    • 0348167570 scopus 로고    scopus 로고
    • Automatic cutting-tool condition monitoring on CNC lathes
    • Szecsi T. Automatic cutting-tool condition monitoring on CNC lathes. J Mater Process Technol. 1998 ; 77: 64-69
    • (1998) J Mater Process Technol , vol.77 , pp. 64-69
    • Szecsi, T.1
  • 20
    • 34247111343 scopus 로고    scopus 로고
    • Development of a system for monitoring tool wear using artificial intelligence techniques
    • Silva RG, Wilcox SJ, Reuben RL. Development of a system for monitoring tool wear using artificial intelligence techniques. Proc IMechE, Part B: J Engineering Manufacture. 2006 ; 220: 1333-1346
    • (2006) Proc IMechE, Part B: J Engineering Manufacture , vol.220 , pp. 1333-1346
    • Silva, R.G.1    Wilcox, S.J.2    Reuben, R.L.3
  • 22
    • 0034174159 scopus 로고    scopus 로고
    • On-line metal cutting tool condition monitoring I: Force and vibration analysis
    • Dimla DE, Lister PM. On-line metal cutting tool condition monitoring I: force and vibration analysis. Int J Mach Tools Mf. 2000 ; 40: 739-768
    • (2000) Int J Mach Tools Mf , vol.40 , pp. 739-768
    • Dimla, D.E.1    Lister, P.M.2
  • 23
    • 27644553923 scopus 로고    scopus 로고
    • Application of singular spectrum analysis to tool wear detection using sound signals
    • Alonso FJ, Salgado DR. Application of singular spectrum analysis to tool wear detection using sound signals. Proc IMechE, Part B: J Engineering Manufacture. 2005 ; 219: 703-710
    • (2005) Proc IMechE, Part B: J Engineering Manufacture , vol.219 , pp. 703-710
    • Alonso, F.J.1    Salgado, D.R.2
  • 24
    • 0034207714 scopus 로고    scopus 로고
    • Multi-sensor integration for on-line monitoring tool wear estimation through artificial neural networks and fuzzy neural network
    • Kuo RJ. Multi-sensor integration for on-line monitoring tool wear estimation through artificial neural networks and fuzzy neural network. Eng Appl Artif Intell. 2000 ; 13: 249-261
    • (2000) Eng Appl Artif Intell , vol.13 , pp. 249-261
    • Kuo, R.J.1
  • 26
    • 56149109352 scopus 로고    scopus 로고
    • The monitoring of the turning tool wear process using an artificial neural network. Part 2: The data processing and the use of artificial neural network on monitoring of the tool wear
    • Balan GC, Epureanu A. The monitoring of the turning tool wear process using an artificial neural network. Part 2: The data processing and the use of artificial neural network on monitoring of the tool wear. Proc IMechE, Part B: J Engineering Manufacture. 2008 ; 222: 1253-1262
    • (2008) Proc IMechE, Part B: J Engineering Manufacture , vol.222 , pp. 1253-1262
    • Balan, G.C.1    Epureanu, A.2
  • 27
    • 33749507805 scopus 로고    scopus 로고
    • Estimation of tool wear during CNC milling using neural network-based sensor fusion
    • Ghosh N, Ravi YB, Patra A, et al. Estimation of tool wear during CNC milling using neural network-based sensor fusion. Mech Syst Sig Process. 2007 ; 21: 466-479
    • (2007) Mech Syst Sig Process , vol.21 , pp. 466-479
    • Ghosh, N.1    Ravi, Y.B.2    Patra, A.3
  • 28
    • 79951810157 scopus 로고    scopus 로고
    • Force-torque based on-line tool wear estimation system for CNC milling of Inconel 718 using neural networks
    • Kaya B, Oysu C, Ertunc HM. Force-torque based on-line tool wear estimation system for CNC milling of Inconel 718 using neural networks. Adv Eng Software. 2011 ; 42: 76-84
    • (2011) Adv Eng Software , vol.42 , pp. 76-84
    • Kaya, B.1    Oysu, C.2    Ertunc, H.M.3
  • 29
    • 0342855329 scopus 로고    scopus 로고
    • Multimilling-insert wear assessment using non-linear virtual sensor, time-frequency distribution and neural networks
    • James LC, Tzeng TC. Multimilling-insert wear assessment using non-linear virtual sensor, time-frequency distribution and neural networks. Mech Syst Sig Process. 2000 ; 14: 945-957
    • (2000) Mech Syst Sig Process , vol.14 , pp. 945-957
    • James, L.C.1    Tzeng, T.C.2
  • 30
    • 34249661124 scopus 로고    scopus 로고
    • Support vector machine in machine condition monitoring and fault diagnosis
    • Widodo A, Yang BS. Support vector machine in machine condition monitoring and fault diagnosis. Mech Syst Sig Process. 2007 ; 21: 2560-2574
    • (2007) Mech Syst Sig Process , vol.21 , pp. 2560-2574
    • Widodo, A.1    Yang, B.S.2
  • 32
    • 34548361987 scopus 로고    scopus 로고
    • An approach based on current and sound signals for in-process tool wear monitoring
    • Salgado DR, Alonso FJ. An approach based on current and sound signals for in-process tool wear monitoring. Int J Mach Tools Mf. 2007 ; 47: 2140-2152
    • (2007) Int J Mach Tools Mf , vol.47 , pp. 2140-2152
    • Salgado, D.R.1    Alonso, F.J.2
  • 33
    • 10444225451 scopus 로고    scopus 로고
    • Tool breakage detection using support vector machine learning in a milling process
    • Cho S, Asfour S, Onar A, et al. Tool breakage detection using support vector machine learning in a milling process. Int J Mach Tools Mf. 2005 ; 45: 241-249
    • (2005) Int J Mach Tools Mf , vol.45 , pp. 241-249
    • Cho, S.1    Asfour, S.2    Onar, A.3
  • 34
    • 84875889504 scopus 로고    scopus 로고
    • (accessed 20 January 2012)
    • www.cs.ucl.ac.uk/sta-/T.Fletcher/ (accessed 20 January 2012).
  • 36
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Yao X. Evolving artificial neural networks. Proc IEEE. 1999 ; 87: 694-713
    • (1999) Proc IEEE , vol.87 , pp. 694-713
    • Yao, X.1
  • 37
    • 41249099701 scopus 로고    scopus 로고
    • Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm
    • Ocak H. Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm. Signal Process. 2008 ; 88: 1858-1867
    • (2008) Signal Process , vol.88 , pp. 1858-1867
    • Ocak, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.