|
Volumn , Issue , 2012, Pages 937-940
|
Invariance of principal components under low-dimensional random projection of the data
a a
a
UCB 450
(United States)
|
Author keywords
Compressive sensing; Hyperspectral data; Low rank matrix recovery; Principal component analysis; Random projections
|
Indexed keywords
COMPRESSIVE SENSING;
DATA SET;
HIGH DIMENSIONAL DATA;
HYPERSPECTRAL DATA;
LOW-RANK MATRIX RECOVERIES;
NUMBER OF DATUM;
PRINCIPAL COMPONENTS;
RANDOM PROJECTIONS;
RANDOM SUBSPACES;
REAL-WORLD DATASETS;
SCALING FACTORS;
IMAGE PROCESSING;
PRINCIPAL COMPONENT ANALYSIS;
SIGNAL RECONSTRUCTION;
ALGORITHMS;
|
EID: 84875872601
PISSN: 15224880
EISSN: None
Source Type: Conference Proceeding
DOI: 10.1109/ICIP.2012.6467015 Document Type: Conference Paper |
Times cited : (40)
|
References (8)
|