메뉴 건너뛰기




Volumn 41, Issue 9, 2013, Pages 835-843

Effect of pumice and sand on the sustainability of granular iron beds for the aqueous removal of CuII, NiII, and ZnII

Author keywords

Groundwater remediation; Hydraulic conductivity; Reactive barriers; Zerovalent iron

Indexed keywords

COPPER; GRAIN SIZE; GROUNDWATER POLLUTION; HYDRAULIC CONDUCTIVITY; IRON; NICKEL; PERMEABILITY; PUMICE; SAND; SUSTAINABILITY; ZINC;

EID: 84875786610     PISSN: 18630650     EISSN: 18630669     Source Type: Journal    
DOI: 10.1002/clen.201100472     Document Type: Article
Times cited : (34)

References (70)
  • 1
    • 0031951040 scopus 로고    scopus 로고
    • Long-Term Performance of an in Situ "Iron Wall" for Remediation of VOCs
    • S. F. O'Hannesin, R. W. Gillham, Long-Term Performance of an in Situ "Iron Wall" for Remediation of VOCs, Ground Water 1998, 36, 164-170.
    • (1998) Ground Water , vol.36 , pp. 164-170
    • O'Hannesin, S.F.1    Gillham, R.W.2
  • 2
    • 33747651140 scopus 로고    scopus 로고
    • Inorganic Contaminant Fate Assessment in Zero-Valent Iron Treatment Walls
    • K. Komnitsas, G. Bartzas, I. Paspaliaris, Inorganic Contaminant Fate Assessment in Zero-Valent Iron Treatment Walls, Environ. Forensics 2006, 7, 207-217.
    • (2006) Environ. Forensics , vol.7 , pp. 207-217
    • Komnitsas, K.1    Bartzas, G.2    Paspaliaris, I.3
  • 3
    • 33747649855 scopus 로고    scopus 로고
    • Modeling of Reaction Front Progress in Fly Ash Permeable Reactive Barriers
    • K. Komnitsas, G. Bartzas, I. Paspaliaris, Modeling of Reaction Front Progress in Fly Ash Permeable Reactive Barriers, Environ. Forensics 2006, 7, 219-231.
    • (2006) Environ. Forensics , vol.7 , pp. 219-231
    • Komnitsas, K.1    Bartzas, G.2    Paspaliaris, I.3
  • 4
    • 34247402911 scopus 로고    scopus 로고
    • Long-Term Performance of Zero-Valent Iron Permeable Reactive Barriers: A Critical Review
    • A. D. Henderson, A. H. Demond, Long-Term Performance of Zero-Valent Iron Permeable Reactive Barriers: A Critical Review, Environ. Eng. Sci. 2007, 24, 401-423.
    • (2007) Environ. Eng. Sci. , vol.24 , pp. 401-423
    • Henderson, A.D.1    Demond, A.H.2
  • 6
    • 77956448029 scopus 로고    scopus 로고
    • Solid Phase Studies and Geochemical Modelling of Low-Cost Permeable Reactive Barriers
    • G. Bartzas, K. Komnitsas, Solid Phase Studies and Geochemical Modelling of Low-Cost Permeable Reactive Barriers, J. Hazard. Mater. 2010, 183, 301-308.
    • (2010) J. Hazard. Mater. , vol.183 , pp. 301-308
    • Bartzas, G.1    Komnitsas, K.2
  • 7
    • 77954538838 scopus 로고    scopus 로고
    • Evaluation of Five Strategies to Limit the Impact of Fouling in Permeable Reactive Barriers
    • L. Li, C. H. Benson, Evaluation of Five Strategies to Limit the Impact of Fouling in Permeable Reactive Barriers, J. Hazard. Mater. 2010, 181, 170-180.
    • (2010) J. Hazard. Mater. , vol.181 , pp. 170-180
    • Li, L.1    Benson, C.H.2
  • 9
    • 78751591291 scopus 로고    scopus 로고
    • A Comparison between Field Applications of Nano-, Micro-, and Millimetric Zero-Valent Iron for the Remediation of Contaminated Aquifers
    • S. Comba, A. Di Molfetta, R. Sethi, A Comparison between Field Applications of Nano-, Micro-, and Millimetric Zero-Valent Iron for the Remediation of Contaminated Aquifers, Water Air Soil Pollut. 2011, 215, 595-607.
    • (2011) Water Air Soil Pollut. , vol.215 , pp. 595-607
    • Comba, S.1    Di Molfetta, A.2    Sethi, R.3
  • 10
    • 80052024315 scopus 로고    scopus 로고
    • Hexavalent Chromium Reduction with Zero-Valent Iron (ZVI) in Aquatic Systems
    • M. Gheju, Hexavalent Chromium Reduction with Zero-Valent Iron (ZVI) in Aquatic Systems, Water Air Soil Pollut. 2011, 222, 103-148.
    • (2011) Water Air Soil Pollut. , vol.222 , pp. 103-148
    • Gheju, M.1
  • 11
    • 84867679406 scopus 로고    scopus 로고
    • ITRC, Interstate Technology & Regulatory Council, PRB: Technology Update Team, Washington, DC.
    • ITRC, Permeable Reactive Barrier: Technology Update. PRB-5, Interstate Technology & Regulatory Council, PRB: Technology Update Team, Washington, DC 2011.
    • (2011) Permeable Reactive Barrier: Technology Update. PRB-5
  • 12
    • 52349101241 scopus 로고    scopus 로고
    • Long-term performance of permeable reactive barriers: lessons learned on design, contaminant treatment, longevity, performance monitoring and cost - an overview
    • in (Eds.: I. Twardowska, H. E. Allen, M. M. Häggblom, S. Stefaniak), NATO Sciences Serie, Springer, Dordrecht.
    • R. W. Puls, Long-term performance of permeable reactive barriers: lessons learned on design, contaminant treatment, longevity, performance monitoring and cost - an overview, in Soil and Water Pollution Monitoring, Protection and Remediation (Eds.: I. Twardowska, H. E. Allen, M. M. Häggblom, S. Stefaniak ), NATO Sciences Serie, Springer, Dordrecht 2006, pp. 221-229.
    • (2006) Soil and Water Pollution Monitoring, Protection and Remediation , pp. 221-229
    • Puls, R.W.1
  • 13
    • 33645244096 scopus 로고    scopus 로고
    • Early Breakthrough of Molybdenum and Uranium in a Permeable Reactive Barrier
    • S. J. Morrison, P. S. Mushovic, P. L. Niesen, Early Breakthrough of Molybdenum and Uranium in a Permeable Reactive Barrier, Environ. Sci. Technol. 2006, 40, 2018-2024.
    • (2006) Environ. Sci. Technol. , vol.40 , pp. 2018-2024
    • Morrison, S.J.1    Mushovic, P.S.2    Niesen, P.L.3
  • 16
    • 80051752889 scopus 로고    scopus 로고
    • Impact of Solids Formation and Gas Production on the Permeability of ZVI PRBs
    • A. D. Henderson, A. H. Demond, Impact of Solids Formation and Gas Production on the Permeability of ZVI PRBs, J. Environ. Eng. 2011, 137, 689-696.
    • (2011) J. Environ. Eng. , vol.137 , pp. 689-696
    • Henderson, A.D.1    Demond, A.H.2
  • 17
    • 84869143263 scopus 로고    scopus 로고
    • Predicting Longevity of Iron Permeable Reactive Barriers Using Multiple Iron Deactivation Models
    • L. Carniato, G. Schoups, P. Seuntjens, T. van Nooten, Q. Simons, L. Bastiaens, Predicting Longevity of Iron Permeable Reactive Barriers Using Multiple Iron Deactivation Models, J. Contam. Hydrol. 2012, 142-143, 93-108.
    • (2012) J. Contam. Hydrol. , vol.142 , Issue.143 , pp. 93-108
    • Carniato, L.1    Schoups, G.2    Seuntjens, P.3    van Nooten, T.4    Simons, Q.5    Bastiaens, L.6
  • 18
    • 84865762685 scopus 로고    scopus 로고
    • Evaluation of Two-Component Fe(0) Fixed Bed Filters with Porous Materials for Reductive Dechlorination
    • A. S. Ruhl, N. Ünal, M. Jekel, Evaluation of Two-Component Fe(0) Fixed Bed Filters with Porous Materials for Reductive Dechlorination, Chem. Eng. J. 2012, 209, 401-406.
    • (2012) Chem. Eng. J. , vol.209 , pp. 401-406
    • Ruhl, A.S.1    Ünal, N.2    Jekel, M.3
  • 19
    • 0032888413 scopus 로고    scopus 로고
    • Mineral Precipitation and Porosity Losses in Granular Iron Columns
    • P. D. Mackenzie, D. P. Horney, T. M. Sivavec, Mineral Precipitation and Porosity Losses in Granular Iron Columns, J. Hazard. Mater. 1999, 68, 1-19.
    • (1999) J. Hazard. Mater. , vol.68 , pp. 1-19
    • Mackenzie, P.D.1    Horney, D.P.2    Sivavec, T.M.3
  • 20
    • 0142238110 scopus 로고    scopus 로고
    • Zero-Valent-Iron Permeable Reactive Barriers - How Long will They Last?
    • D. Sarr, Zero-Valent-Iron Permeable Reactive Barriers - How Long will They Last?, Remediation 2001, 11, 1-18.
    • (2001) Remediation , vol.11 , pp. 1-18
    • Sarr, D.1
  • 21
    • 65849253975 scopus 로고    scopus 로고
    • Effects of Mixing Granular Iron with Sand on the Kinetics of Trichloroethylene Reduction
    • E. Bi, J. F. Devlin, B. Huang, Effects of Mixing Granular Iron with Sand on the Kinetics of Trichloroethylene Reduction, Ground Water Monit. Remed. 2009, 29, 56-62.
    • (2009) Ground Water Monit. Remed. , vol.29 , pp. 56-62
    • Bi, E.1    Devlin, J.F.2    Huang, B.3
  • 22
    • 84883348766 scopus 로고    scopus 로고
    • MSc Thesis, Worcester Polytechnic Institute, Worcester, MA 2011
    • S. Ulsamer, MSc Thesis, Worcester Polytechnic Institute, Worcester, MA 2011, 1-73.
    • Ulsamer, S.1
  • 23
    • 84871295527 scopus 로고    scopus 로고
    • Optimizing the Design of Metallic Iron Filters for Water Treatment
    • (Online publication)
    • K. Miyajima, Optimizing the Design of Metallic Iron Filters for Water Treatment, Freiberg Online Geosci. 2012, 32, 60 pp. (Online publication)
    • (2012) Freiberg Online Geosci. , vol.32 , pp. 60
    • Miyajima, K.1
  • 24
    • 84864754443 scopus 로고    scopus 로고
    • Effects of Mixing Granular Iron with Sand on the Efficiency of Methylene Blue Discoloration
    • K. Miyajima, C. Noubactep, Effects of Mixing Granular Iron with Sand on the Efficiency of Methylene Blue Discoloration, Chem. Eng. J. 2012, 200-202, 433-438.
    • (2012) Chem. Eng. J. , vol.200 , Issue.202 , pp. 433-438
    • Miyajima, K.1    Noubactep, C.2
  • 25
    • 0038012912 scopus 로고    scopus 로고
    • In Situ Remediation of Arsenic in Simulated Groundwater Using Zerovalent Iron: Laboratory Column Tests on Combined Effects of Phosphate and Silicate
    • C. Su, R. W. Puls, In Situ Remediation of Arsenic in Simulated Groundwater Using Zerovalent Iron: Laboratory Column Tests on Combined Effects of Phosphate and Silicate, Environ. Sci. Technol. 2003, 37, 2582-2587.
    • (2003) Environ. Sci. Technol. , vol.37 , pp. 2582-2587
    • Su, C.1    Puls, R.W.2
  • 26
    • 0037385318 scopus 로고    scopus 로고
    • Nitrate Removal in Zero-Valent Iron Packed Columns
    • P. Westerhoff, J. James, Nitrate Removal in Zero-Valent Iron Packed Columns, Water Res. 2003, 37, 1818-1830.
    • (2003) Water Res. , vol.37 , pp. 1818-1830
    • Westerhoff, P.1    James, J.2
  • 27
    • 4944231549 scopus 로고    scopus 로고
    • Zero-Valent Iron Removal Rates of Aqueous Cr(VI) Measured under Flow Conditions
    • D. I. Kaplan, T. J. Gilmore, Zero-Valent Iron Removal Rates of Aqueous Cr(VI) Measured under Flow Conditions, Water Air Soil Pollut. 2004, 155, 21-33.
    • (2004) Water Air Soil Pollut. , vol.155 , pp. 21-33
    • Kaplan, D.I.1    Gilmore, T.J.2
  • 28
    • 18844421377 scopus 로고    scopus 로고
    • Removal of Arsenic from Water by Zero-Valent Iron
    • S. Bang, G. P. Korfiatis, X. Meng, Removal of Arsenic from Water by Zero-Valent Iron, J. Hazard. Mater. 2005, 121, 61-67.
    • (2005) J. Hazard. Mater. , vol.121 , pp. 61-67
    • Bang, S.1    Korfiatis, G.P.2    Meng, X.3
  • 29
    • 26944455150 scopus 로고    scopus 로고
    • Arsenic Removal from Bangladesh Tube Well Water with Filter Columns Containing Zerovalent Iron Filings and Sand
    • O. X. Leupin, S. J. Hug, A. B. M. Badruzzaman, Arsenic Removal from Bangladesh Tube Well Water with Filter Columns Containing Zerovalent Iron Filings and Sand, Environ. Sci. Technol. 2005, 39, 8032-8037.
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 8032-8037
    • Leupin, O.X.1    Hug, S.J.2    Badruzzaman, A.B.M.3
  • 30
    • 34548824358 scopus 로고    scopus 로고
    • Long-Term Efficiency and Kinetic Evaluation of ZVI Barriers during Clean-Up of Copper Containing Solutions
    • K. Komnitsas, G. Bartzas, K. Fytas, I. Paspaliaris, Long-Term Efficiency and Kinetic Evaluation of ZVI Barriers during Clean-Up of Copper Containing Solutions, Miner. Eng. 2007, 20, 1200-1209.
    • (2007) Miner. Eng. , vol.20 , pp. 1200-1209
    • Komnitsas, K.1    Bartzas, G.2    Fytas, K.3    Paspaliaris, I.4
  • 31
    • 84883433307 scopus 로고    scopus 로고
    • MSc Thesis, University of Regina, Saskatchewan
    • A. M. Gottinger, MSc Thesis, University of Regina, Saskatchewan 2010, 1-90.
    • (2010) , pp. 1-90
    • Gottinger, A.M.1
  • 32
    • 71849119183 scopus 로고    scopus 로고
    • Removal of Nitrate by Zero-Valent Iron and Pillared Bentonite
    • J. Li, Y. Li, Q. Meng, Removal of Nitrate by Zero-Valent Iron and Pillared Bentonite, J. Hazard. Mater. 2010, 174, 188-193.
    • (2010) J. Hazard. Mater. , vol.174 , pp. 188-193
    • Li, J.1    Li, Y.2    Meng, Q.3
  • 33
    • 77955517360 scopus 로고    scopus 로고
    • Heavy Metals Removal and Hydraulic Performance in Zero-Valent Iron/Pumice Permeable Reactive Barriers
    • N. Moraci, P. S. Calabrò, Heavy Metals Removal and Hydraulic Performance in Zero-Valent Iron/Pumice Permeable Reactive Barriers, J. Environ. Manage. 2010, 91, 2336-2341.
    • (2010) J. Environ. Manage. , vol.91 , pp. 2336-2341
    • Moraci, N.1    Calabrò, P.S.2
  • 35
    • 79955984855 scopus 로고    scopus 로고
    • Designing Laboratory Metallic Iron Columns for Better Result Comparability
    • C. Noubactep, S. Caré, Designing Laboratory Metallic Iron Columns for Better Result Comparability, J. Hazard. Mater. 2011, 189, 809-813.
    • (2011) J. Hazard. Mater. , vol.189 , pp. 809-813
    • Noubactep, C.1    Caré, S.2
  • 36
    • 84864775217 scopus 로고    scopus 로고
    • Designing Iron-Amended Biosand Filters for Decentralized Safe Drinking Water Provision
    • C. Noubactep, E. Temgoua, M. A. Rahman, Designing Iron-Amended Biosand Filters for Decentralized Safe Drinking Water Provision, Clean - Soil Air Water 2012, 40, 798-807.
    • (2012) Clean - Soil Air Water , vol.40 , pp. 798-807
    • Noubactep, C.1    Temgoua, E.2    Rahman, M.A.3
  • 37
    • 50249085431 scopus 로고    scopus 로고
    • Field Evidence for Flow Reduction through a Zero-Valent Iron Permeable Reactive Barrier
    • R. L. Johnson, R. B. Thoms, R. O'Brian Johnson, T. Krug, Field Evidence for Flow Reduction through a Zero-Valent Iron Permeable Reactive Barrier, Ground Water Monit. Remed. 2008, 28, 47-55.
    • (2008) Ground Water Monit. Remed. , vol.28 , pp. 47-55
    • Johnson, R.L.1    Thoms, R.B.2    O'Brian Johnson, R.3    Krug, T.4
  • 39
    • 77950938128 scopus 로고    scopus 로고
    • SONO Filter: An Excellent Technology for Save Water in Nepal
    • S. Tuladhar, L. S. Smith, SONO Filter: An Excellent Technology for Save Water in Nepal, SOPHEN 2009, 7, 18-24.
    • (2009) SOPHEN , vol.7 , pp. 18-24
    • Tuladhar, S.1    Smith, L.S.2
  • 40
    • 77955518166 scopus 로고    scopus 로고
    • Permeability, shear strength & compressibility tests
    • in, Vol., Whittles Publishing, Caithness.
    • K. H. Head, G. P. Keeton, Permeability, shear strength & compressibility tests, in Manual of Soil Laboratory Testing, Vol. 2, Whittles Publishing, Caithness 2008.
    • (2008) Manual of Soil Laboratory Testing , vol.2
    • Head, K.H.1    Keeton, G.P.2
  • 41
    • 84870560686 scopus 로고    scopus 로고
    • APHA, AWWA, WEF, 21st Ed., American Public Health Association, Washington, DC.
    • APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, 21st Ed., American Public Health Association, Washington, DC 2005.
    • (2005) Standard Methods for the Examination of Water and Wastewater
  • 42
    • 45249107992 scopus 로고    scopus 로고
    • Mechanical Properties of the Rust Layer Induced by Impressed Current Method in Reinforced Mortar
    • S. Caré, Q. T. Nguyen, V. L'Hostis, Y. Berthaud, Mechanical Properties of the Rust Layer Induced by Impressed Current Method in Reinforced Mortar, Cement Concrete Res. 2008, 38, 1079-1091.
    • (2008) Cement Concrete Res. , vol.38 , pp. 1079-1091
    • Caré, S.1    Nguyen, Q.T.2    L'Hostis, V.3    Berthaud, Y.4
  • 43
    • 79952898250 scopus 로고    scopus 로고
    • Composition and Expansion Coefficient of Rust Based on X-Ray Diffraction and Thermal Analysis
    • Y. Zhao, H. Ren, H. Dai, W. Jin, Composition and Expansion Coefficient of Rust Based on X-Ray Diffraction and Thermal Analysis, Corros. Sci. 2011, 53, 1646-1658.
    • (2011) Corros. Sci. , vol.53 , pp. 1646-1658
    • Zhao, Y.1    Ren, H.2    Dai, H.3    Jin, W.4
  • 44
    • 43049119718 scopus 로고    scopus 로고
    • 2O" Systems Revisited. The Importance of Co-Precipitation
    • 2O" Systems Revisited. The Importance of Co-Precipitation, Open Environ. J. 2007, 1, 9-13.
    • (2007) Open Environ. J. , vol.1 , pp. 9-13
    • Noubactep, C.1
  • 46
    • 78349280701 scopus 로고    scopus 로고
    • The Fundamental Mechanism of Aqueous Contaminant Removal by Metallic Iron
    • C. Noubactep, The Fundamental Mechanism of Aqueous Contaminant Removal by Metallic Iron, Water SA 2010, 36, 663-670.
    • (2010) Water SA , vol.36 , pp. 663-670
    • Noubactep, C.1
  • 47
    • 77956506342 scopus 로고    scopus 로고
    • The Suitability of Metallic Iron for Environmental Remediation
    • C. Noubactep, The Suitability of Metallic Iron for Environmental Remediation, Environ. Prog. Sustainable Energy 2010, 29, 286-291.
    • (2010) Environ. Prog. Sustainable Energy , vol.29 , pp. 286-291
    • Noubactep, C.1
  • 48
    • 79960880279 scopus 로고    scopus 로고
    • Aqueous Contaminant Removal by Metallic Iron: Is the Paradigm Shifting?
    • C. Noubactep, Aqueous Contaminant Removal by Metallic Iron: Is the Paradigm Shifting?, Water SA 2011, 37, 419-426.
    • (2011) Water SA , vol.37 , pp. 419-426
    • Noubactep, C.1
  • 49
    • 0012909913 scopus 로고    scopus 로고
    • Selectivity Sequence and Competitive Adsorption of Heavy Metals by Brazilian Soils
    • P. C. Gomes, M. P. F. Fontes, A. G. Silva, E. S. Mendonca, A. R. Netto, Selectivity Sequence and Competitive Adsorption of Heavy Metals by Brazilian Soils, Soil Sci. Soc. Am. J. 2001, 65, 1115-1121.
    • (2001) Soil Sci. Soc. Am. J. , vol.65 , pp. 1115-1121
    • Gomes, P.C.1    Fontes, M.P.F.2    Silva, A.G.3    Mendonca, E.S.4    Netto, A.R.5
  • 50
    • 0037409797 scopus 로고    scopus 로고
    • Simultaneous Competitive Adsorption of Heavy Metals by the Mineral Matrix of Tropical Soils
    • M. P. F. Fontes, P. C. Gomes, Simultaneous Competitive Adsorption of Heavy Metals by the Mineral Matrix of Tropical Soils, Appl. Geochem. 2003, 18, 795-804.
    • (2003) Appl. Geochem. , vol.18 , pp. 795-804
    • Fontes, M.P.F.1    Gomes, P.C.2
  • 51
    • 77952832816 scopus 로고    scopus 로고
    • The Role of Iron in the Fixation of Heavy Metals and Metalloids in Soils: A Review of Publications
    • Y. N. Vodyanitskii, The Role of Iron in the Fixation of Heavy Metals and Metalloids in Soils: A Review of Publications, Eurasian Soil Sci. 2010, 43, 519-532.
    • (2010) Eurasian Soil Sci. , vol.43 , pp. 519-532
    • Vodyanitskii, Y.N.1
  • 52
    • 79955374360 scopus 로고    scopus 로고
    • Preferential and Enhanced Adsorption of Different Dyes on Iron Oxide Nanoparticles: A Comparative Study
    • B. Saha, S. Das, J. Saikia, G. Das, Preferential and Enhanced Adsorption of Different Dyes on Iron Oxide Nanoparticles: A Comparative Study, J. Phys. Chem. C 2011, 115, 8024-8033.
    • (2011) J. Phys. Chem. C , vol.115 , pp. 8024-8033
    • Saha, B.1    Das, S.2    Saikia, J.3    Das, G.4
  • 53
    • 79551540909 scopus 로고    scopus 로고
    • Nano-Scale Metallic Iron for the Treatment of Solutions Containing Multiple Inorganic Contaminants
    • T. B. Scott, I. C. Popescu, R. A. Crane, C. Noubactep, Nano-Scale Metallic Iron for the Treatment of Solutions Containing Multiple Inorganic Contaminants, J. Hazard. Mater. 2011, 186, 280-287.
    • (2011) J. Hazard. Mater. , vol.186 , pp. 280-287
    • Scott, T.B.1    Popescu, I.C.2    Crane, R.A.3    Noubactep, C.4
  • 55
    • 77955281108 scopus 로고    scopus 로고
    • Contending with a Development Disaster: SONO Filters Remove Arsenic from Well Water in Bangladesh
    • A. Hussam, Contending with a Development Disaster: SONO Filters Remove Arsenic from Well Water in Bangladesh, Innovations 2009, 4, 89-102.
    • (2009) Innovations , vol.4 , pp. 89-102
    • Hussam, A.1
  • 56
    • 57049147898 scopus 로고    scopus 로고
    • Arsenic Contamination of Groundwater in the Terai Region of Nepal: An Overview of Health Concerns and Treatment Options
    • D. Pokhrel, B. S. Bhandari, T. Viraraghavan, Arsenic Contamination of Groundwater in the Terai Region of Nepal: An Overview of Health Concerns and Treatment Options, Environ. Int. 2009, 35, 157-161.
    • (2009) Environ. Int. , vol.35 , pp. 157-161
    • Pokhrel, D.1    Bhandari, B.S.2    Viraraghavan, T.3
  • 57
    • 84857232622 scopus 로고    scopus 로고
    • Estimate of the Optimum Weight Ratio in Zero-Valent Iron/Pumice Granular Mixtures Used in Permeable Reactive Barriers for the Remediation of Nickel Contaminated Groundwater
    • P. S. Calabrò, N. Moraci, P. Suraci, Estimate of the Optimum Weight Ratio in Zero-Valent Iron/Pumice Granular Mixtures Used in Permeable Reactive Barriers for the Remediation of Nickel Contaminated Groundwater, J. Hazard. Mater. 2012, 207-208, 111-116.
    • (2012) J. Hazard. Mater. , vol.207 , Issue.208 , pp. 111-116
    • Calabrò, P.S.1    Moraci, N.2    Suraci, P.3
  • 58
    • 77955272988 scopus 로고    scopus 로고
    • Enhancing Sustainability of Household Water Filters by Mixing Metallic Iron with Porous Materials
    • C. Noubactep, S. Caré, Enhancing Sustainability of Household Water Filters by Mixing Metallic Iron with Porous Materials, Chem. Eng. J. 2010, 162, 635-642.
    • (2010) Chem. Eng. J. , vol.162 , pp. 635-642
    • Noubactep, C.1    Caré, S.2
  • 60
    • 0001779316 scopus 로고
    • Fluid Flow through a Granular Bed
    • P. C. Carman, Fluid Flow through a Granular Bed, Trans. Inst. Chem. Eng. 1937, 15, 150-166.
    • (1937) Trans. Inst. Chem. Eng. , vol.15 , pp. 150-166
    • Carman, P.C.1
  • 62
    • 11244324228 scopus 로고    scopus 로고
    • Predicting the Saturated Hydraulic Conductivity of Sand and Gravel Using Effective Diameter and Void Ratio
    • R. P. Chapuis, Predicting the Saturated Hydraulic Conductivity of Sand and Gravel Using Effective Diameter and Void Ratio, Can. Geotech. J. 2004, 41, 787-795.
    • (2004) Can. Geotech. J. , vol.41 , pp. 787-795
    • Chapuis, R.P.1
  • 63
    • 58149474174 scopus 로고    scopus 로고
    • Grain-Size to Effective Pore-Size Transformation Derived from Electrokinetic Theory
    • P. W. J. Glover, E. Walker, Grain-Size to Effective Pore-Size Transformation Derived from Electrokinetic Theory, Geophysics 2009, 74, E17- E29.
    • (2009) Geophysics , vol.74
    • Glover, P.W.J.1    Walker, E.2
  • 64
    • 79956082333 scopus 로고    scopus 로고
    • Modelling Coupled Processes of Non Steady Seepage Flow and Non Linear Deformation for a Concrete-Faced Rockfill Dam
    • Y. Chen, R. Hu, W. Lu, D. Li, C. Zhou, Modelling Coupled Processes of Non Steady Seepage Flow and Non Linear Deformation for a Concrete-Faced Rockfill Dam, Comput. Struct. 2011, 89, 1333-1351.
    • (2011) Comput. Struct. , vol.89 , pp. 1333-1351
    • Chen, Y.1    Hu, R.2    Lu, W.3    Li, D.4    Zhou, C.5
  • 65
    • 77956648725 scopus 로고    scopus 로고
    • Dimensioning Metallic Iron Beds for Efficient Contaminant Removal
    • C. Noubactep, S. Caré, Dimensioning Metallic Iron Beds for Efficient Contaminant Removal, Chem. Eng. J. 2010, 163, 454-460.
    • (2010) Chem. Eng. J. , vol.163 , pp. 454-460
    • Noubactep, C.1    Caré, S.2
  • 66
  • 67
    • 80052037678 scopus 로고    scopus 로고
    • Mobilization and Deposition of Iron Nano and Sub-Micrometer Particles in Porous Media: A Glass Micromodel Study
    • Q. Wang, J.-H. Lee, S.-W. Jeong, A. Jang, S. Lee, H. Choi, Mobilization and Deposition of Iron Nano and Sub-Micrometer Particles in Porous Media: A Glass Micromodel Study, J. Hazard. Mater. 2011, 192, 1466-1475.
    • (2011) J. Hazard. Mater. , vol.192 , pp. 1466-1475
    • Wang, Q.1    Lee, J.-H.2    Jeong, S.-W.3    Jang, A.4    Lee, S.5    Choi, H.6
  • 68
    • 82955203150 scopus 로고    scopus 로고
    • Removal of Viruses and Bacteriophages from Drinking Water Using Zero-Valent Iron
    • C. Shi, J. Wei, Y. Jin, K. E. Kniel, P. C. Chiu, Removal of Viruses and Bacteriophages from Drinking Water Using Zero-Valent Iron, Sep. Purif. Technol. 2012, 84, 72-78.
    • (2012) Sep. Purif. Technol. , vol.84 , pp. 72-78
    • Shi, C.1    Wei, J.2    Jin, Y.3    Kniel, K.E.4    Chiu, P.C.5
  • 70
    • 84867745735 scopus 로고    scopus 로고
    • Influence of Dissolved Inorganic Carbon and Calcium on Gas Formation and Accumulation in Iron Permeable Reactive Barriers
    • A. S. Ruhl, A. Weber, M. Jekel, Influence of Dissolved Inorganic Carbon and Calcium on Gas Formation and Accumulation in Iron Permeable Reactive Barriers, J. Contam. Hydrol. 2012, 142-143, 22-32.
    • (2012) J. Contam. Hydrol. , vol.142 , Issue.143 , pp. 22-32
    • Ruhl, A.S.1    Weber, A.2    Jekel, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.