메뉴 건너뛰기




Volumn 55, Issue 1-2, 2013, Pages 26-32

Misfire detection of a turbocharged diesel engine by using artificial neural networks

Author keywords

Diesel engine; Experimental study; Misfire detection; Modeling; Neural network

Indexed keywords

ARTIFICIAL NEURAL NETWORK MODELS; BACK PROPAGATION NEURAL NETWORKS; DIESEL COMBUSTION; EXPERIMENTAL STUDIES; MISFIRE DETECTION; NEURAL NETWORK MODEL; OPERATING PARAMETERS; TURBOCHARGED DIESEL ENGINE;

EID: 84875746878     PISSN: 13594311     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.applthermaleng.2013.02.032     Document Type: Article
Times cited : (59)

References (25)
  • 1
    • 17644373812 scopus 로고    scopus 로고
    • Misfire detection of locomotive diesel engine by non-linear analysis
    • DOI 10.1016/j.ymssp.2004.06.004, PII S0888327004000883
    • P. Bogus, and J. Merkisz Misfire detection of locomotive diesel engine by non-linear analysis Mech. Syst. Signal. Process. 19 2005 881 899 (Pubitemid 40556440)
    • (2005) Mechanical Systems and Signal Processing , vol.19 , Issue.4 , pp. 881-899
    • Bogus, P.1    Merkisz, J.2
  • 3
    • 78649635027 scopus 로고    scopus 로고
    • Multivariate statistical analysis strategy for multiple misfire detection in internal combustion engines
    • C.Hun, A. Li, and X. Zhao Multivariate statistical analysis strategy for multiple misfire detection in internal combustion engines Mech. Syst. Signal. Process. 25 2011 694 703
    • (2011) Mech. Syst. Signal. Process. , vol.25 , pp. 694-703
    • Hun, C.1    Li, A.2    Zhao, X.3
  • 7
    • 53949122440 scopus 로고    scopus 로고
    • Development of a torsional behavior powertrain model for multiple misfire detection
    • 022803-1-022803-13
    • F. Ponti Development of a torsional behavior powertrain model for multiple misfire detection J. Eng. Gas. Turb. Power 130 2008 022803-1-022803-13
    • (2008) J. Eng. Gas. Turb. Power , vol.130
    • Ponti, F.1
  • 8
    • 0034848449 scopus 로고    scopus 로고
    • Real-time cylinder pressure and indicated torque estimation via second order sliding modes
    • I. Haskara, L. Mianzo. Real-time cylinder pressure and indicated torque estimation via second order sliding modes, P. ACC. On Arlington, VA, USA, 2001, 3324-3328. (Pubitemid 32837137)
    • (2001) Proceedings of the American Control Conference , vol.5 , pp. 3324-3328
    • Haskara, I.1    Mianzo, L.2
  • 9
    • 48949120646 scopus 로고    scopus 로고
    • In-Cylinder pressure measurement: Requirements for on-board engine control
    • 032803-1-032803-9
    • F. Ponti In-Cylinder pressure measurement: requirements for on-board engine control J. Eng. Gas. Turbines Power 130 2008 032803-1-032803-9
    • (2008) J. Eng. Gas. Turbines Power , vol.130
    • Ponti, F.1
  • 10
    • 29244491457 scopus 로고    scopus 로고
    • Application of artificial neural network to predict specific fuel consumption and exhaust temperature for a diesel engine
    • A.Parlaka, Y.Islamoglub, H. Yasarb, and A.Egrisogutb Application of artificial neural network to predict specific fuel consumption and exhaust temperature for a diesel engine Appl. Therm. Eng. 26 2006 824 828
    • (2006) Appl. Therm. Eng. , vol.26 , pp. 824-828
    • Parlaka, A.1    Islamoglub, Y.2    Yasarb, H.3    Egrisogutb, A.4
  • 11
    • 70349470950 scopus 로고    scopus 로고
    • Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks
    • N. Togun, and S. Baysec Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks Appl. Energy 87 2010 349 355
    • (2010) Appl. Energy , vol.87 , pp. 349-355
    • Togun, N.1    Baysec, S.2
  • 12
    • 0033626010 scopus 로고    scopus 로고
    • Neural network modeling of the emissions and performance of a heavy-duty diesel engine
    • G. Thompson, C. Atkinson, N. Clark, T. Long, and E. Hanzevack Neural network modeling of the emissions and performance of a heavy-duty diesel engine Proc. Mech. Eng. D-J. Aut. 214 2000 111 126
    • (2000) Proc. Mech. Eng. D-J. Aut. , vol.214 , pp. 111-126
    • Thompson, G.1    Atkinson, C.2    Clark, N.3    Long, T.4    Hanzevack, E.5
  • 13
    • 5044252688 scopus 로고    scopus 로고
    • A diesel engine's performance and exhaust emissions
    • DOI 10.1016/j.apenergy.2004.03.004, PII S0306261904000376
    • E. Arcaklioglu, and I. Celikten A diesel engine's performance and exhaust emissions Appl. Energy 80 2005 11 22 (Pubitemid 39342465)
    • (2005) Applied Energy , vol.80 , Issue.1 , pp. 11-22
    • Arcaklioglu, E.1    Celikten, I.2
  • 14
    • 33749266885 scopus 로고    scopus 로고
    • Performance and exhaust emissions of a gasoline engine using artificial neural network
    • DOI 10.1016/j.applthermaleng.2006.05.016, PII S1359431106001785
    • C. Sayin, H. Ertunc, M. Hosoz, I. Kilicaslan, and M. Canakci Performance and exhaust emissions of a gasoline engine using artificial neural network Appl. Therm. Eng. 27 2007 46 54 (Pubitemid 44486894)
    • (2007) Applied Thermal Engineering , vol.27 , Issue.1 , pp. 46-54
    • Sayin, C.1    Ertunc, H.M.2    Hosoz, M.3    Kilicaslan, I.4    Canakci, M.5
  • 15
    • 0036771668 scopus 로고    scopus 로고
    • An analysis for effect of cetane number on exhaust emissions from engine with the neural network
    • Y. Deng, M. Zhu, D. Xiang, and X. Cheng An analysis for effect of cetane number on exhaust emissions from engine with the neural network Fuel 81 2002 1963 1970
    • (2002) Fuel , vol.81 , pp. 1963-1970
    • Deng, Y.1    Zhu, M.2    Xiang, D.3    Cheng, X.4
  • 16
    • 79952535556 scopus 로고    scopus 로고
    • Neural network (ANN) approach to biodiesel analysis: Analysis of biodiesel density, kinematic viscosity, methanol and water contents using near infrared (NIR) spectroscopy
    • R. Balabin, E. Lomakina, and R. Safieva Neural network (ANN) approach to biodiesel analysis: analysis of biodiesel density, kinematic viscosity, methanol and water contents using near infrared (NIR) spectroscopy Fuel 90 2011 2007 2015
    • (2011) Fuel , vol.90 , pp. 2007-2015
    • Balabin, R.1    Lomakina, E.2    Safieva, R.3
  • 17
    • 78651467913 scopus 로고    scopus 로고
    • Prediction of diesel engine performance using biofuels with artificial neural network
    • H. Oguz, I. SarItas, and H. Baydan Prediction of diesel engine performance using biofuels with artificial neural network Expert Syst. Appl. 37 2010 6579 6586
    • (2010) Expert Syst. Appl. , vol.37 , pp. 6579-6586
    • Oguz, H.1    Saritas, I.2    Baydan, H.3
  • 18
    • 56049096202 scopus 로고    scopus 로고
    • Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network
    • B. Ghobadian, H. Rahimi, A. Nikbakht, G. Najafi, and T. Yusaf Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network Renew Energy 34 2009 976 982
    • (2009) Renew Energy , vol.34 , pp. 976-982
    • Ghobadian, B.1    Rahimi, H.2    Nikbakht, A.3    Najafi, G.4    Yusaf, T.5
  • 21
    • 0033879856 scopus 로고    scopus 로고
    • Artificial neural networks for the prediction of the energy consumption of a passive solar building
    • DOI 10.1016/S0360-5442(99)00086-9
    • S.A. Kalogirou, and M. Bojic Artificial neural-networks for the prediction of the energy consumption of a passive solar-building Energy 25 2000 479 491 (Pubitemid 30586361)
    • (2000) Energy (Oxford) , vol.25 , Issue.5 , pp. 479-491
    • Kalogirou, S.A.1    Bojic, M.2
  • 22
    • 39949085420 scopus 로고    scopus 로고
    • Prediction of martensite and austenite start temperatures of the Fe-based shape memory alloys by artificial neural networks
    • O. Eyercioglu, E. Kanca, M. Pala, and E. Ozbay Prediction of martensite and austenite start temperatures of the Fe-based shape memory alloys by artificial neural networks J. Mater. Process. Technol. 200 2008 146 152
    • (2008) J. Mater. Process. Technol. , vol.200 , pp. 146-152
    • Eyercioglu, O.1    Kanca, E.2    Pala, M.3    Ozbay, E.4
  • 25
    • 0001321138 scopus 로고
    • On the representation of continuous functions of several variables by superposition of continuous functions of one variable and addition
    • A.N. Kolmogorov On the representation of continuous functions of several variables by superposition of continuous functions of one variable and addition Doklady Akademii Nauk USSR 114 1957 679 681
    • (1957) Doklady Akademii Nauk USSR , vol.114 , pp. 679-681
    • Kolmogorov, A.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.