-
1
-
-
17644373812
-
Misfire detection of locomotive diesel engine by non-linear analysis
-
DOI 10.1016/j.ymssp.2004.06.004, PII S0888327004000883
-
P. Bogus, and J. Merkisz Misfire detection of locomotive diesel engine by non-linear analysis Mech. Syst. Signal. Process. 19 2005 881 899 (Pubitemid 40556440)
-
(2005)
Mechanical Systems and Signal Processing
, vol.19
, Issue.4
, pp. 881-899
-
-
Bogus, P.1
Merkisz, J.2
-
3
-
-
78649635027
-
Multivariate statistical analysis strategy for multiple misfire detection in internal combustion engines
-
C.Hun, A. Li, and X. Zhao Multivariate statistical analysis strategy for multiple misfire detection in internal combustion engines Mech. Syst. Signal. Process. 25 2011 694 703
-
(2011)
Mech. Syst. Signal. Process.
, vol.25
, pp. 694-703
-
-
Hun, C.1
Li, A.2
Zhao, X.3
-
5
-
-
79952840479
-
Diesel misfire fault diagnosis and misfire cylinder ascertainment based on vibration signal explosion peak identification
-
J. Liu, Y.Shi, X. Qiao, X.Zhang. Diesel misfire fault diagnosis and misfire cylinder ascertainment based on vibration signal explosion peak identification, P. 3rd Intl. Conf. on Meas. Technol. and Mechatronics Automation, Shanghai-China, 2011, 1083-1086.
-
(2011)
P. 3rd Intl. Conf. on Meas. Technol. and Mechatronics Automation, Shanghai-China
, pp. 1083-1086
-
-
Liu, J.1
Shi, Y.2
Qiao, X.3
Zhang, X.4
-
7
-
-
53949122440
-
Development of a torsional behavior powertrain model for multiple misfire detection
-
022803-1-022803-13
-
F. Ponti Development of a torsional behavior powertrain model for multiple misfire detection J. Eng. Gas. Turb. Power 130 2008 022803-1-022803-13
-
(2008)
J. Eng. Gas. Turb. Power
, vol.130
-
-
Ponti, F.1
-
8
-
-
0034848449
-
Real-time cylinder pressure and indicated torque estimation via second order sliding modes
-
I. Haskara, L. Mianzo. Real-time cylinder pressure and indicated torque estimation via second order sliding modes, P. ACC. On Arlington, VA, USA, 2001, 3324-3328. (Pubitemid 32837137)
-
(2001)
Proceedings of the American Control Conference
, vol.5
, pp. 3324-3328
-
-
Haskara, I.1
Mianzo, L.2
-
9
-
-
48949120646
-
In-Cylinder pressure measurement: Requirements for on-board engine control
-
032803-1-032803-9
-
F. Ponti In-Cylinder pressure measurement: requirements for on-board engine control J. Eng. Gas. Turbines Power 130 2008 032803-1-032803-9
-
(2008)
J. Eng. Gas. Turbines Power
, vol.130
-
-
Ponti, F.1
-
10
-
-
29244491457
-
Application of artificial neural network to predict specific fuel consumption and exhaust temperature for a diesel engine
-
A.Parlaka, Y.Islamoglub, H. Yasarb, and A.Egrisogutb Application of artificial neural network to predict specific fuel consumption and exhaust temperature for a diesel engine Appl. Therm. Eng. 26 2006 824 828
-
(2006)
Appl. Therm. Eng.
, vol.26
, pp. 824-828
-
-
Parlaka, A.1
Islamoglub, Y.2
Yasarb, H.3
Egrisogutb, A.4
-
11
-
-
70349470950
-
Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks
-
N. Togun, and S. Baysec Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks Appl. Energy 87 2010 349 355
-
(2010)
Appl. Energy
, vol.87
, pp. 349-355
-
-
Togun, N.1
Baysec, S.2
-
12
-
-
0033626010
-
Neural network modeling of the emissions and performance of a heavy-duty diesel engine
-
G. Thompson, C. Atkinson, N. Clark, T. Long, and E. Hanzevack Neural network modeling of the emissions and performance of a heavy-duty diesel engine Proc. Mech. Eng. D-J. Aut. 214 2000 111 126
-
(2000)
Proc. Mech. Eng. D-J. Aut.
, vol.214
, pp. 111-126
-
-
Thompson, G.1
Atkinson, C.2
Clark, N.3
Long, T.4
Hanzevack, E.5
-
13
-
-
5044252688
-
A diesel engine's performance and exhaust emissions
-
DOI 10.1016/j.apenergy.2004.03.004, PII S0306261904000376
-
E. Arcaklioglu, and I. Celikten A diesel engine's performance and exhaust emissions Appl. Energy 80 2005 11 22 (Pubitemid 39342465)
-
(2005)
Applied Energy
, vol.80
, Issue.1
, pp. 11-22
-
-
Arcaklioglu, E.1
Celikten, I.2
-
14
-
-
33749266885
-
Performance and exhaust emissions of a gasoline engine using artificial neural network
-
DOI 10.1016/j.applthermaleng.2006.05.016, PII S1359431106001785
-
C. Sayin, H. Ertunc, M. Hosoz, I. Kilicaslan, and M. Canakci Performance and exhaust emissions of a gasoline engine using artificial neural network Appl. Therm. Eng. 27 2007 46 54 (Pubitemid 44486894)
-
(2007)
Applied Thermal Engineering
, vol.27
, Issue.1
, pp. 46-54
-
-
Sayin, C.1
Ertunc, H.M.2
Hosoz, M.3
Kilicaslan, I.4
Canakci, M.5
-
15
-
-
0036771668
-
An analysis for effect of cetane number on exhaust emissions from engine with the neural network
-
Y. Deng, M. Zhu, D. Xiang, and X. Cheng An analysis for effect of cetane number on exhaust emissions from engine with the neural network Fuel 81 2002 1963 1970
-
(2002)
Fuel
, vol.81
, pp. 1963-1970
-
-
Deng, Y.1
Zhu, M.2
Xiang, D.3
Cheng, X.4
-
16
-
-
79952535556
-
Neural network (ANN) approach to biodiesel analysis: Analysis of biodiesel density, kinematic viscosity, methanol and water contents using near infrared (NIR) spectroscopy
-
R. Balabin, E. Lomakina, and R. Safieva Neural network (ANN) approach to biodiesel analysis: analysis of biodiesel density, kinematic viscosity, methanol and water contents using near infrared (NIR) spectroscopy Fuel 90 2011 2007 2015
-
(2011)
Fuel
, vol.90
, pp. 2007-2015
-
-
Balabin, R.1
Lomakina, E.2
Safieva, R.3
-
17
-
-
78651467913
-
Prediction of diesel engine performance using biofuels with artificial neural network
-
H. Oguz, I. SarItas, and H. Baydan Prediction of diesel engine performance using biofuels with artificial neural network Expert Syst. Appl. 37 2010 6579 6586
-
(2010)
Expert Syst. Appl.
, vol.37
, pp. 6579-6586
-
-
Oguz, H.1
Saritas, I.2
Baydan, H.3
-
18
-
-
56049096202
-
Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network
-
B. Ghobadian, H. Rahimi, A. Nikbakht, G. Najafi, and T. Yusaf Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network Renew Energy 34 2009 976 982
-
(2009)
Renew Energy
, vol.34
, pp. 976-982
-
-
Ghobadian, B.1
Rahimi, H.2
Nikbakht, A.3
Najafi, G.4
Yusaf, T.5
-
21
-
-
0033879856
-
Artificial neural networks for the prediction of the energy consumption of a passive solar building
-
DOI 10.1016/S0360-5442(99)00086-9
-
S.A. Kalogirou, and M. Bojic Artificial neural-networks for the prediction of the energy consumption of a passive solar-building Energy 25 2000 479 491 (Pubitemid 30586361)
-
(2000)
Energy (Oxford)
, vol.25
, Issue.5
, pp. 479-491
-
-
Kalogirou, S.A.1
Bojic, M.2
-
22
-
-
39949085420
-
Prediction of martensite and austenite start temperatures of the Fe-based shape memory alloys by artificial neural networks
-
O. Eyercioglu, E. Kanca, M. Pala, and E. Ozbay Prediction of martensite and austenite start temperatures of the Fe-based shape memory alloys by artificial neural networks J. Mater. Process. Technol. 200 2008 146 152
-
(2008)
J. Mater. Process. Technol.
, vol.200
, pp. 146-152
-
-
Eyercioglu, O.1
Kanca, E.2
Pala, M.3
Ozbay, E.4
-
25
-
-
0001321138
-
On the representation of continuous functions of several variables by superposition of continuous functions of one variable and addition
-
A.N. Kolmogorov On the representation of continuous functions of several variables by superposition of continuous functions of one variable and addition Doklady Akademii Nauk USSR 114 1957 679 681
-
(1957)
Doklady Akademii Nauk USSR
, vol.114
, pp. 679-681
-
-
Kolmogorov, A.N.1
|