메뉴 건너뛰기




Volumn 39, Issue 4, 2013, Pages 552-569

Reducing features to improve code change-based bug prediction

Author keywords

bug prediction; feature selection; machine learning; Reliability

Indexed keywords

CLASSIFICATION (OF INFORMATION); CLASSIFIERS; FORECASTING; LEARNING SYSTEMS; SUPPORT VECTOR MACHINES;

EID: 84875712394     PISSN: 00985589     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSE.2012.43     Document Type: Article
Times cited : (224)

References (53)
  • 1
    • 9644265275 scopus 로고    scopus 로고
    • A feature selection technique for classificatory analysis
    • A. Ahmad and L. Dey, "A Feature Selection Technique for Classificatory Analysis," Pattern Recognition Letters, vol. 26, no. 1, pp. 43-56, 2005.
    • (2005) Pattern Recognition Letters , vol.26 , Issue.1 , pp. 43-56
    • Ahmad, A.1    Dey, L.2
  • 4
    • 41149128425 scopus 로고    scopus 로고
    • Learning from bug-introducing changes to prevent fault prone code
    • DOI 10.1145/1294948.1294954, IWPSE'07: Ninth International Workshop on Principles of Software Evolution - In conjunction with the 6th ESEC/FSE Joint Meeting
    • L. Aversano, L. Cerulo, and C. Del Grosso, "Learning from Bug-Introducing Changes to Prevent Fault Prone Code," Proc. Foundations of Software Eng., pp. 19-26, 2007. (Pubitemid 351438679)
    • (2007) International Workshop on Principles of Software Evolution (IWPSE) , pp. 19-26
    • Aversano, L.1    Cerulo, L.2    Del Grosso, C.3
  • 9
    • 0003233889 scopus 로고
    • One-sided confidence contours for probability distribution functions
    • Z. Birnbaum and F. Tingey, "One-Sided Confidence Contours for Probability Distribution Functions," The Annals of Math. Statistics, vol. 22, pp. 592-596, 1951.
    • (1951) The Annals of Math. Statistics , vol.22 , pp. 592-596
    • Birnbaum, Z.1    Tingey, F.2
  • 10
  • 12
    • 84860648659 scopus 로고    scopus 로고
    • Evaluating defect prediction approaches: A benchmark and an extensive comparison
    • M. D'Ambros, M. Lanza, and R. Robbes, "Evaluating Defect Prediction Approaches: A Benchmark and an Extensive Comparison," Empirical Software Eng., pp. 1-47, 2011.
    • (2011) Empirical Software Eng , pp. 1-47
    • D'Ambros, M.1    Lanza, M.2    Robbes, R.3
  • 14
    • 40749135790 scopus 로고    scopus 로고
    • Predicting defect-prone software modules using support vector machines
    • DOI 10.1016/j.jss.2007.07.040, PII S016412120700235X
    • K. Elish and M. Elish, "Predicting Defect-Prone Software Modules Using Support Vector Machines," J. Systems and Software, vol. 81, no. 5, pp. 649-660, 2008. (Pubitemid 351389562)
    • (2008) Journal of Systems and Software , vol.81 , Issue.5 , pp. 649-660
    • Elish, K.O.1    Elish, M.O.2
  • 16
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to roc analysis
    • T. Fawcett, "An Introduction to ROC Analysis," Pattern Recognition Letters, vol. 27, no. 8, pp. 861-874, 2006.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 18
    • 79952838952 scopus 로고    scopus 로고
    • Choosing software metrics for defect prediction: An investigation on feature selection techniques
    • K. Gao, T. Khoshgoftaar, H. Wang, and N. Seliya, "Choosing Software Metrics for Defect Prediction: An Investigation on Feature Selection Techniques," Software: Practice and Experience, vol. 41, no. 5, pp. 579-606, 2011.
    • (2011) Software: Practice and Experience , vol.41 , Issue.5 , pp. 579-606
    • Gao, K.1    Khoshgoftaar, T.2    Wang, H.3    Seliya, N.4
  • 19
    • 30344485154 scopus 로고    scopus 로고
    • Empirical validation of object-oriented metrics on open source software for fault prediction
    • DOI 10.1109/TSE.2005.112
    • T. Gyimóthy, R. Ferenc, and I. Siket, "Empirical Validation of Object-Oriented Metrics on Open Source Software for Fault Prediction," IEEE Trans. Software Eng., vol. 31, no. 10, pp. 897-910, Oct. 2005. (Pubitemid 43065752)
    • (2005) IEEE Transactions on Software Engineering , vol.31 , Issue.10 , pp. 897-910
    • Gyimothy, T.1    Ferenc, R.2    Siket, I.3
  • 20
    • 0242410408 scopus 로고    scopus 로고
    • Benchmarking attribute selection techniques for discrete class data mining
    • Nov./Dec
    • M. Hall and G. Holmes, "Benchmarking Attribute Selection Techniques for Discrete Class Data Mining," IEEE Trans. Knowledge and Data Eng., vol. 15, no. 6, pp. 1437-1447, Nov./Dec. 2003.
    • (2003) IEEE Trans. Knowledge and Data Eng , vol.15 , Issue.6 , pp. 1437-1447
    • Hall, M.1    Holmes, G.2
  • 24
    • 84957069814 scopus 로고    scopus 로고
    • Text Categorization with Support Vector Machines: Learning with many Relevant Features
    • Machine Learning: ECML-98
    • T. Joachims, "Text Categorization with Support Vector Machines: Learning with Many Relevant Features," Proc. 10th European Conf. Machine Learning, pp. 137-142, 1998. (Pubitemid 128067178)
    • (1998) Lecture Notes in Computer Science , Issue.1398 , pp. 137-142
    • Joachims, T.1
  • 27
    • 3543110264 scopus 로고    scopus 로고
    • Ordering fault-prone software modules
    • DOI 10.1023/A:1023632027907
    • T. Khoshgoftaar and E. Allen, "Ordering Fault-Prone Software Modules," Software Quality J., vol. 11, no. 1, pp. 19-37, 2003. (Pubitemid 39019689)
    • (2003) Software Quality Journal , vol.11 , Issue.1 , pp. 19-37
    • Khoshgoftaar, T.M.1    Allen, E.B.2
  • 28
    • 42549094431 scopus 로고    scopus 로고
    • Classifying software changes: Clean or buggy?
    • DOI 10.1109/TSE.2007.70773
    • S. Kim, E. Whitehead Jr., and Y. Zhang, "Classifying Software Changes: Clean or Buggy?" IEEE Trans. Software Eng., vol. 34, no. 2, pp. 181-196, Mar./Apr. 2008. (Pubitemid 351583527)
    • (2008) IEEE Transactions on Software Engineering , vol.34 , Issue.2 , pp. 181-196
    • Kim, S.1    Whitehead Jr., E.J.2    Zhang, Y.3
  • 31
    • 84992726552 scopus 로고
    • Estimating attributes: Analysis and extensions of relief
    • I. Kononenko, "Estimating Attributes: Analysis and Extensions of Relief," Proc. European Conf. Machine Learning, pp. 171-182, 1994.
    • (1994) Proc. European Conf. Machine Learning , pp. 171-182
    • Kononenko, I.1
  • 33
    • 49349089233 scopus 로고    scopus 로고
    • Benchmarking classification models for software defect prediction: A proposed framework and novel Findings
    • July/Aug
    • S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, "Benchmarking Classification Models for Software Defect Prediction: A Proposed Framework and Novel Findings," IEEE Trans. Software Eng., vol. 34, no. 4, pp. 485-496, July/Aug. 2008.
    • (2008) IEEE Trans. Software Eng , vol.34 , Issue.4 , pp. 485-496
    • Lessmann, S.1    Baesens, B.2    Mues, C.3    Pietsch, S.4
  • 34
    • 84957069091 scopus 로고    scopus 로고
    • Naive (bayes) at forty: The independence assumption in information retrieval
    • D. Lewis, "Naive (Bayes) at Forty: The Independence Assumption in Information Retrieval," Proc. 10th European Conf. Machine Learning, pp. 4-15, 1998.
    • (1998) Proc. 10th European Conf. Machine Learning , pp. 4-15
    • Lewis, D.1
  • 37
    • 84941871856 scopus 로고
    • The kolmogorov-smirnov test for goodness of fit
    • F. Massey Jr., "The Kolmogorov-Smirnov Test for Goodness of Fit," J. Am. Statistical Assoc., vol. 46, pp. 68-78, 1951.
    • (1951) J. Am. Statistical Assoc , vol.46 , pp. 68-78
    • Massey Jr., F.1
  • 39
    • 33845782503 scopus 로고    scopus 로고
    • Data mining static code attributes to learn defect predictors
    • DOI 10.1109/TSE.2007.256941
    • T. Menzies, J. Greenwald, and A. Frank, "Data Mining Static Code Attributes to Learn Defect Predictors," IEEE Trans. Software Eng., vol. 33, no. 1, pp. 2-13, Jan. 2007. (Pubitemid 46002165)
    • (2007) IEEE Transactions on Software Engineering , vol.33 , Issue.1 , pp. 2-13
    • Menzies, T.1    Greenwald, J.2    Frank, A.3
  • 40
    • 0034513916 scopus 로고    scopus 로고
    • Identifying reasons for software changes using historic databases
    • A. Mockus and L. Votta, "Identifying Reasons for Software Changes Using Historic Databases," Proc. Int'l Conf. Software Maintenance, pp. 120-130, 2000. (Pubitemid 32072789)
    • (2000) Conference on Software Maintenance , pp. 120-130
    • Mockus Audris1    Votta Lawrence, G.2
  • 41
    • 0034172234 scopus 로고    scopus 로고
    • Predicting risk of software changes
    • A. Mockus and D. Weiss, "Predicting Risk of Software Changes," Bell Labs Technical J., vol. 5, no. 2, pp. 169-180, 2000.
    • (2000) Bell Labs Technical J , vol.5 , Issue.2 , pp. 169-180
    • Mockus, A.1    Weiss, D.2
  • 42
    • 0034271117 scopus 로고    scopus 로고
    • A hybrid approach to analyze empirical software engineering data and its application to predict module Fault-Proneness in Maintenance
    • S. Morasca and G. Ruhe, "A Hybrid Approach to Analyze Empirical Software Engineering Data and Its Application to Predict Module Fault-Proneness in Maintenance," J. Systems Software, vol. 53, no. 3, pp. 225-237, 2000.
    • (2000) J. Systems Software , vol.53 , Issue.3 , pp. 225-237
    • Morasca, S.1    Ruhe, G.2
  • 43
    • 57349133760 scopus 로고    scopus 로고
    • A comparative analysis of the efficiency of change metrics and static code attributes for defect Prediction
    • R. Moser, W. Pedrycz, and G. Succi, "A Comparative Analysis of the Efficiency of Change Metrics and Static Code Attributes for Defect Prediction," Proc. 30th ACM/IEEE Int'l Conf. Software Eng., pp. 181-190, 2008.
    • (2008) Proc. 30th ACM/IEEE Int'l Conf. Software Eng , pp. 181-190
    • Moser, R.1    Pedrycz, W.2    Succi, G.3
  • 44
    • 22944473604 scopus 로고    scopus 로고
    • Predicting the location and number of faults in large software systems
    • DOI 10.1109/TSE.2005.49
    • T. Ostrand, E. Weyuker, and R. Bell, "Predicting the Location and Number of Faults in Large Software Systems," IEEE Trans. Software Eng., vol. 31, no. 4, pp. 340-355, Apr. 2005. (Pubitemid 41046924)
    • (2005) IEEE Transactions on Software Engineering , vol.31 , Issue.4 , pp. 340-355
    • Ostrand, T.J.1    Weyuker, E.J.2    Bell, R.M.3
  • 46
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of relieff and rrelieff
    • M. Robnik-Sikonja and I. Kononenko, "Theoretical and Empirical Analysis of Relieff and RRelieff," Machine Learning, vol. 53, no. 1, pp. 23-69, 2003.
    • (2003) Machine Learning , vol.53 , Issue.1 , pp. 23-69
    • Robnik-Sikonja, M.1    Kononenko, I.2
  • 51
    • 79957799751 scopus 로고    scopus 로고
    • A general software defect-proneness prediction framework
    • May/June
    • Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, "A General Software Defect-Proneness Prediction Framework," IEEE Trans. Software Eng., vol. 37, no. 3, pp. 356-370, May/June 2011.
    • (2011) IEEE Trans. Software Eng , vol.37 , Issue.3 , pp. 356-370
    • Song, Q.1    Jia, Z.2    Shepperd, M.3    Ying, S.4    Liu, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.