메뉴 건너뛰기




Volumn 722, Issue , 2013, Pages 214-239

Blood flow in small tubes: Quantifying the transition to the non-continuum regime

Author keywords

biological fluid dynamics; capsule cell dynamics; micro nano fluid dynamics

Indexed keywords

BLOOD; BLOOD VESSELS; CELLS; CYTOLOGY; DYNAMICS; HEMODYNAMICS; NEWTONIAN LIQUIDS; PARTICLE SIZE ANALYSIS; SHEAR DEFORMATION; SHEAR STRESS; STRAIN RATE; SUSPENSIONS (FLUIDS); TUBES (COMPONENTS); VISCOSITY;

EID: 84875698838     PISSN: 00221120     EISSN: 14697645     Source Type: Journal    
DOI: 10.1017/jfm.2013.91     Document Type: Article
Times cited : (76)

References (38)
  • 1
    • 84866749285 scopus 로고    scopus 로고
    • Quantification of red blood cell deformation at high-hematocrit bloodflow in microvessels
    • ALIZADEHRAD, D., IMAI, Y., NAKAAKI, K., ISHIKAWA, T. & YAMAGUCHI, T. 2012 Quantification of red blood cell deformation at high-hematocrit bloodflow in microvessels. J. Biomech. 45, 2684-2689.
    • (2012) J. Biomech. , vol.45 , pp. 2684-2689
    • Alizadehrad, D.1    Imai, Y.2    Nakaaki, K.3    Ishikawa, T.4    Yamaguchi, T.5
  • 2
    • 0014989611 scopus 로고
    • Prediction of blood flow in tubes with diameters as small as 29 μ
    • BARBEE, J. H. & COKELET, G. R. 1971 Prediction of blood flow in tubes with diameters as small as 29 μ. Microvasc. Res. 3, 17-21.
    • (1971) Microvasc. Res. , vol.3 , pp. 17-21
    • Barbee, J.H.1    Cokelet, G.R.2
  • 3
    • 0014825785 scopus 로고
    • Velocity distribution and other characteristics of steady and pulsatile blood flow in fine glass tubes
    • BUGLIARELLO, G. & SEVILLA, J. 1970 Velocity distribution and other characteristics of steady and pulsatile blood flow in fine glass tubes. Biorheology 7, 85-107.
    • (1970) Biorheology , vol.7 , pp. 85-107
    • Bugliarello, G.1    Sevilla, J.2
  • 5
    • 0013873058 scopus 로고
    • Effects of hematocrit and plasma proteins on human blood rheology at low shear rates
    • CHIEN, S., USAMI, S., TAYLOR, H. M., LUNDBERG, J. L. & GREGERSEN, M. I. 1966 Effects of hematocrit and plasma proteins on human blood rheology at low shear rates. J. Appl. Physiol. 21, 81-87.
    • (1966) J. Appl. Physiol. , vol.21 , pp. 81-87
    • Chien, S.1    Usami, S.2    Taylor, H.M.3    Lundberg, J.L.4    Gregersen, M.I.5
  • 6
    • 0026098613 scopus 로고
    • Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates
    • COKELET, G. R. & GOLDSMITH, H. L. 1991 Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates. Circulat. Res. 68, 1-17.
    • (1991) Circulat. Res. , vol.68 , pp. 1-17
    • Cokelet, G.R.1    Goldsmith, H.L.2
  • 7
    • 0031705402 scopus 로고    scopus 로고
    • Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration
    • DISCHER, D. E., BOAL, D. H. & BOEY, S. K. 1998 Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. Biophys. J. 75, 1584-1597.
    • (1998) Biophys. J. , vol.75 , pp. 1584-1597
    • Discher, D.E.1    Boal, D.H.2    Boey, S.K.3
  • 8
    • 34547346708 scopus 로고    scopus 로고
    • Modeling the flow of dense suspensions of deformable particles in three dimensions
    • DUPIN, M. M., HALLIDAY, I., CARE, C. M., ALBOUL, L. & MUNN, L. L. 2007 Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys. Rev. E 75 (6), 066707.
    • (2007) Phys. Rev. e , vol.75 , pp. 6066707
    • Dupin, M.M.1    Halliday, I.2    Care, C.M.3    Alboul, L.4    Munn, L.L.5
  • 9
    • 0033863339 scopus 로고    scopus 로고
    • Hematocrit, volume expander, temperature, and shear rate effects on blood viscosity
    • ECKMANN, D. M., BOWERS, S., STECKER, M. & CHEUNG, A. T. 2000 Hematocrit, volume expander, temperature, and shear rate effects on blood viscosity. Anesthesia Analgesia 91, 539-545.
    • (2000) Anesthesia Analgesia , vol.91 , pp. 539-545
    • Eckmann, D.M.1    Bowers, S.2    Stecker, M.3    Cheung, A.T.4
  • 10
    • 84956259119 scopus 로고
    • Statistical mechanics of dissipative particle dynamics
    • ESPANOL, P. & WARREN, P. 1995 Statistical mechanics of dissipative particle dynamics. Europhys. Lett. 30, 191-196.
    • (1995) Europhys. Lett. , vol.30 , pp. 191-196
    • Espanol, P.1    Warren, P.2
  • 12
    • 0001422594 scopus 로고
    • The suspension stability of the blood
    • FAHRAEUS, R. 1929 The suspension stability of the blood. Physiol. Rev. 9, 241-274.
    • (1929) Physiol. Rev. , vol.9 , pp. 241-274
    • Fahraeus, R.1
  • 13
    • 0001331302 scopus 로고
    • Viscosity of blood in narrow capillary tubes
    • FAHRAEUS, R. & LINDQVIST, T. 1931 Viscosity of blood in narrow capillary tubes. Am. J. Phys. 96, 562-568.
    • (1931) Am. J. Phys. , vol.96 , pp. 562-568
    • Fahraeus, R.1    Lindqvist, T.2
  • 14
    • 33745603699 scopus 로고    scopus 로고
    • Simulating flow of DNA suspension using dissipative particle dynamics
    • FAN, X. J., PHAN-THIEN, N., CHEN, S., WU, X. H. & NG, T. Y. 2006 Simulating flow of DNA suspension using dissipative particle dynamics. Phys. Fluids 18, 063102.
    • (2006) Phys. Fluids , vol.18 , pp. 063102
    • Fan, X.J.1    Phan-Thien, N.2    Chen, S.3    Wu, X.H.4    Ng, T.Y.5
  • 15
    • 77952786405 scopus 로고    scopus 로고
    • A multiscale red blood cell model with accurate mechanics, rheology, and dynamics
    • FEDOSOV, D. A., CASWELL, B. & KARNIADAKIS, G. E. 2010a A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophys. J. 98, 2215-2225.
    • (2010) Biophys J. , vol.98 , pp. 2215-2225
    • Fedosov, D.A.1    Caswell, B.2    Karniadakis, G.E.3
  • 16
    • 77951124133 scopus 로고    scopus 로고
    • Steady shear rheometry of dissipative particle dynamics models of polymer fluids in reverse Poiseuille flow
    • FEDOSOV, D. A., CASWELL, B. & KARNIADAKIS, G. E. 2010b Steady shear rheometry of dissipative particle dynamics models of polymer fluids in reverse Poiseuille flow. J. Chem. Phys. 132, 144103.
    • (2010) J. Chem. Phys. , vol.132 , pp. 144103
    • Fedosov, D.A.1    Caswell, B.2    Karniadakis, G.E.3
  • 20
    • 79952817091 scopus 로고    scopus 로고
    • Cellular flow in a small blood vessel
    • FREUND, J. B. & ORESCANIN, M. M. 2011 Cellular flow in a small blood vessel. J. Fluid Mech. 671, 466-490.
    • (2011) J. Fluid Mech. , vol.671 , pp. 466-490
    • Freund, J.B.1    Orescanin, M.M.2
  • 21
    • 0019121378 scopus 로고
    • Motion, deformation, and interaction of blood cells and plasma during flow through narrow capillary tubes
    • GAEHTGENS, P., DÜHRSSEN, C. & ALBRECHT, K. H. 1980 Motion, deformation, and interaction of blood cells and plasma during flow through narrow capillary tubes. Blood Cells 6, 799-817.
    • (1980) Blood Cells , vol.6 , pp. 799-817
    • Gaehtgens, P.1    Dührssen, C.2    Albrecht, K.H.3
  • 22
    • 0024397828 scopus 로고
    • Robin Fahraeus: Evolution of his concepts in cardiovascular physiology
    • GOLDSMITH, H. L., COKELET, G. R. & GAEHTGENS, P. 1989 Robin Fahraeus: evolution of his concepts in cardiovascular physiology. Am. J. Phys. 257, H1005-H1015.
    • (1989) Am. J. Phys. , vol.257
    • Goldsmith, H.L.1    Cokelet, G.R.2    Gaehtgens, P.3
  • 23
    • 84950109965 scopus 로고
    • Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics
    • HOOGERBRUGGE, P. J. & KOELMAN, J. M. V. A. 1992 Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19, 155-160.
    • (1992) Europhys. Lett. , vol.19 , pp. 155-160
    • Hoogerbrugge, P.J.1    Koelman, J.M.V.A.2
  • 24
    • 34548456437 scopus 로고    scopus 로고
    • Temporal and spatial variations of cell-free layer width in arterioles
    • KIM, S., LONG, L. R., POPEL, A. S., INTAGLIETTA, M. & JOHNSON, P. C. 2007 Temporal and spatial variations of cell-free layer width in arterioles. Am. J. Phys. 293, H1526-H1535.
    • (2007) Am. J. Phys. , vol.293
    • Kim, S.1    Long, L.R.2    Popel, A.S.3    Intaglietta, M.4    Johnson, P.C.5
  • 25
    • 77249155208 scopus 로고    scopus 로고
    • Direct construction of mesoscopic models from microscopic simulations
    • LEI, H., CASWELL, B. & KARNIADAKIS, G. E. 2010 Direct construction of mesoscopic models from microscopic simulations. Phys. Rev. E 81, 026704.
    • (2010) Phys. Rev. e , vol.81 , pp. 026704
    • Lei, H.1    Caswell, B.2    Karniadakis, G.E.3
  • 26
    • 0030472170 scopus 로고    scopus 로고
    • Erythrocyte flow and elasticity of microvessels evaluated by marginal cell-free layer and flow resistance
    • MAEDA, N., SUZUKI, Y., TANAKA, J. & TATEISHI, N. 1996 Erythrocyte flow and elasticity of microvessels evaluated by marginal cell-free layer and flow resistance. Am. J. Phys. 271, H2454-H2461.
    • (1996) Am. J. Phys. , vol.271
    • Maeda, N.1    Suzuki, Y.2    Tanaka, J.3    Tateishi, N.4
  • 28
    • 65549093598 scopus 로고    scopus 로고
    • Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries
    • MCWHIRTER, L. J., NOGUCHI, H. & GOMPPER, G. 2009 Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. Proc. Natl Acad. Sci. USA 106, 6039-6043.
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 6039-6043
    • McWhirter, L.J.1    Noguchi, H.2    Gompper, G.3
  • 29
    • 0001367861 scopus 로고
    • Rheology of human blood, near and at zero flow: Effects of temperature and hematocrit level
    • MERRILL, E. W., GILLILAND, E. R., COKELET, G., SHIN, H., BRITTEN, A. & WELLS, R. E. 1963 Rheology of human blood, near and at zero flow: effects of temperature and hematocrit level. Biophys. J. 3, 199-213.
    • (1963) Biophys. J. , vol.3 , pp. 199-213
    • Merrill, E.W.1    Gilliland, E.R.2    Cokelet, G.3    Shin, H.4    Britten Wells A, R.E.5
  • 31
    • 77952206108 scopus 로고    scopus 로고
    • Mathematical modelling of the cell-depleted peripheral layer in the steady flow of blood in a tube
    • MOYERS-GONZALEZ, M. A. & OWENS, R. G. 2010 Mathematical modelling of the cell-depleted peripheral layer in the steady flow of blood in a tube. Biorheology 47, 39-71.
    • (2010) Biorheology , vol.47 , pp. 39-71
    • Moyers-Gonzalez, M.A.1    Owens, R.G.2
  • 33
  • 34
    • 0027089966 scopus 로고
    • Blood viscosity in tube flow: Dependence on diameter and hematocrit
    • PRIES, A. R., NEUHAUS, D. & GAEHTGENS, P. 1992 Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Phys. 263, H1770-H1778.
    • (1992) Am. J. Phys. , vol.263
    • Pries, A.R.1    Neuhaus, D.2    Gaehtgens, P.3
  • 35
    • 0023622010 scopus 로고
    • Blood viscosity in small tubes: Effect of shear rate, aggregation, and sedimentation
    • REINKE, W., GAEHTGENS, P. & JOHNSON, P. C. 1987 Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation. Am. J. Phys. 253, H540-H547.
    • (1987) Am. J. Phys. , vol.253
    • Reinke, W.1    Gaehtgens, P.2    Johnson, P.C.3
  • 36
    • 0035738371 scopus 로고    scopus 로고
    • A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall
    • SHARAN, M. & POPEL, A. S. 2001 A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology 38, 415-428.
    • (2001) Biorheology , vol.38 , pp. 415-428
    • Sharan, M.1    Popel, A.S.2
  • 38
    • 84975836116 scopus 로고
    • A simple formula for the 'law of the wall'
    • SPALDING, D. B. 1961 A simple formula for the 'law of the wall'. Trans. ASME: J. Appl. Mech. 28, 455-458.
    • (1961) Trans. ASME: J. Appl. Mech. , vol.28 , pp. 455-458
    • Spalding, D.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.