메뉴 건너뛰기




Volumn 8, Issue 3, 2013, Pages 255-262

Evaluation and amelioration of computer-aided diagnosis with artificial neural networks utilizing small-sized sample sets

Author keywords

Artificial neural network (ANN) uncertainty; Bootstrap method; Computer aided disease diagnosis; Confidence interval (CI); Leave one out cross validation; Prediction interval (PI); Small sized sample set

Indexed keywords

COMPUTER AIDED NETWORK ANALYSIS; COMPUTER NETWORKS; DISTRIBUTION FUNCTIONS; NEURAL NETWORKS; SAMPLING;

EID: 84875694763     PISSN: 17468094     EISSN: 17468108     Source Type: Journal    
DOI: 10.1016/j.bspc.2012.11.001     Document Type: Article
Times cited : (9)

References (33)
  • 1
    • 0018079655 scopus 로고
    • Basic principles of ROC analysis
    • C.E. Metz Basic principles of ROC analysis Seminars in Nuclear Medicine 8 1978 283 298
    • (1978) Seminars in Nuclear Medicine , vol.8 , pp. 283-298
    • Metz, C.E.1
  • 2
    • 0027457620 scopus 로고
    • Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine
    • M.H. Zweig, and G. Campbell Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine Clinical Chemistry 39 1993 561 577
    • (1993) Clinical Chemistry , vol.39 , pp. 561-577
    • Zweig, M.H.1    Campbell, G.2
  • 4
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the Jackknife
    • B. Efron Bootstrap methods: another look at the Jackknife Annals of Statistics 7 1979 1 26
    • (1979) Annals of Statistics , vol.7 , pp. 1-26
    • Efron, B.1
  • 7
    • 11144310081 scopus 로고    scopus 로고
    • The application of Efron's bootstrap methods in validating feature classification using artificial neural networks for the analysis of mammographic masses
    • San Francisco, CA, United States
    • Y. Liu, M.R. Smith, and R.M. Rangayyan The application of Efron's bootstrap methods in validating feature classification using artificial neural networks for the analysis of mammographic masses Proceedings of 26th International Conference on IEEE Engineering in Medicine and Biology Society San Francisco, CA, United States 2004 1553 1556
    • (2004) Proceedings of 26th International Conference on IEEE Engineering in Medicine and Biology Society , pp. 1553-1556
    • Liu, Y.1    Smith, M.R.2    Rangayyan, R.M.3
  • 9
    • 6344292088 scopus 로고    scopus 로고
    • Cambridge University Press The Pitt Building, Trumpington Street, Cambridge, United Kingdom
    • A.M. Zoubir, and D.R. Iskander Bootstrap Techniques for Signal Processing 2004 Cambridge University Press The Pitt Building, Trumpington Street, Cambridge, United Kingdom
    • (2004) Bootstrap Techniques for Signal Processing
    • Zoubir, A.M.1    Iskander, D.R.2
  • 10
    • 0029542206 scopus 로고
    • Estimating expected error rates of neural network classifiers in small sample size situations: A comparison of cross-validation and bootstrap
    • Perth, Australia
    • N. Ueda, and R. Nakano Estimating expected error rates of neural network classifiers in small sample size situations: a comparison of cross-validation and bootstrap Proceedings of 1995 IEEE International Joint Conference on Neural Networks Perth, Australia 1995 101 104
    • (1995) Proceedings of 1995 IEEE International Joint Conference on Neural Networks , pp. 101-104
    • Ueda, N.1    Nakano, R.2
  • 11
    • 0035480411 scopus 로고    scopus 로고
    • Bootstrap re-sampling for unbalanced data in supervised learning
    • G. Dupret, and M. Koda Bootstrap re-sampling for unbalanced data in supervised learning European Journal of Operational Research 134 2001 141 156
    • (2001) European Journal of Operational Research , vol.134 , pp. 141-156
    • Dupret, G.1    Koda, M.2
  • 13
    • 0031677647 scopus 로고    scopus 로고
    • The bootstrap and its application in signal processing
    • A.M. Zoubir, and B. Boashash The bootstrap and its application in signal processing IEEE Signal Processing Magazine 15 1998 56 76
    • (1998) IEEE Signal Processing Magazine , vol.15 , pp. 56-76
    • Zoubir, A.M.1    Boashash, B.2
  • 14
    • 0348156854 scopus 로고    scopus 로고
    • Evaluation of several nonparametric bootstrap methods to estimate confidence intervals for software metrics
    • S. Lei, and M.R. Smith Evaluation of several nonparametric bootstrap methods to estimate confidence intervals for software metrics IEEE Transactions on Software Engineering 29 2003 996 1004
    • (2003) IEEE Transactions on Software Engineering , vol.29 , pp. 996-1004
    • Lei, S.1    Smith, M.R.2
  • 16
    • 0034657861 scopus 로고    scopus 로고
    • Bootstrap confidence intervals: When, which, what? A practical guide for medical statisticians
    • J. Carpenter, and J. Bithell Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians Statistics in Medicine 19 2000 1141 1164
    • (2000) Statistics in Medicine , vol.19 , pp. 1141-1164
    • Carpenter, J.1    Bithell, J.2
  • 17
    • 67650214852 scopus 로고    scopus 로고
    • Evaluation of the sensitivity of a medical data-mining application to the number of elements in small databases
    • M.R. Smith, X. Wang, and R.M. Rangayyan Evaluation of the sensitivity of a medical data-mining application to the number of elements in small databases Biomedical Signal Processing and Control 4 2009 262 268
    • (2009) Biomedical Signal Processing and Control , vol.4 , pp. 262-268
    • Smith, M.R.1    Wang, X.2    Rangayyan, R.M.3
  • 20
    • 23444461386 scopus 로고    scopus 로고
    • Content-based retrieval and analysis of mammographic masses
    • Article 023016. Erratum: 16 (1), (2007), p1, Article 019801
    • H. Alto, R.M. Rangayyan, and J.E.L. Desautels Content-based retrieval and analysis of mammographic masses Journal of Electronic Imaging 14 2 2005 1 17 Article 023016. Erratum: 16 (1), (2007), p1, Article 019801
    • (2005) Journal of Electronic Imaging , vol.14 , Issue.2 , pp. 1-17
    • Alto, H.1    Rangayyan, R.M.2    Desautels, J.E.L.3
  • 23
    • 33744548422 scopus 로고    scopus 로고
    • Classification of breast masses in mammograms using neural networks with shape, edge sharpness, and texture features
    • Article 013019. Erratum: 16 (1), (2007) p1, Article 019802
    • T.C.S.S. André, and R.M. Rangayyan Classification of breast masses in mammograms using neural networks with shape, edge sharpness, and texture features Journal of Electronic Imaging 15 1 2006 1 10 Article 013019. Erratum: 16 (1), (2007) p1, Article 019802
    • (2006) Journal of Electronic Imaging , vol.15 , Issue.1 , pp. 1-10
    • André, T.C.S.S.1    Rangayyan, R.M.2
  • 30
    • 0042025303 scopus 로고    scopus 로고
    • Uncertainty in the output of artificial neural networks
    • J. Yulei Uncertainty in the output of artificial neural networks IEEE Transactions on Medical Imaging 22 2003 913 921
    • (2003) IEEE Transactions on Medical Imaging , vol.22 , pp. 913-921
    • Yulei, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.