-
3
-
-
3343010401
-
A diffusive predator-prey model in heterogeneous environment
-
DU, Y. & HSU, S. B. (2004) A diffusive predator-prey model in heterogeneous environment. J. Differ. Equ., 203, 331-364.
-
(2004)
J. Differ. Equ.
, vol.203
, pp. 331-364
-
-
Du, Y.1
Hsu, S.B.2
-
4
-
-
0038652547
-
Limit cycles in the Holling-Tanner model
-
GASULL, A., KOOIJ, R. E. & TORRGROSA, J. (1997) Limit cycles in the Holling-Tanner model. Publ. Mat., 41, 149-167.
-
(1997)
Publ. Mat.
, vol.41
, pp. 149-167
-
-
Gasull, A.1
Kooij, R.E.2
Torrgrosa, J.3
-
6
-
-
64049107266
-
Hopf bifurcation analysis of a reaction-diffusion Sel'kov system
-
HAN, W. & BAO, Z. (2009) Hopf bifurcation analysis of a reaction-diffusion Sel'kov system. J. Math. Anal. Appl., 356, 633-641.
-
(2009)
J. Math. Anal. Appl.
, vol.356
, pp. 633-641
-
-
Han, W.1
Bao, Z.2
-
8
-
-
0029325665
-
Global stability for a class of predator-prey system
-
HSU, S. B. & HUANG, T. W. (1995) Global stability for a class of predator-prey system. SIAM J. Appl. Math., 55, 763-783.
-
(1995)
SIAM J. Appl. Math.
, vol.55
, pp. 763-783
-
-
Hsu, S.B.1
Huang, T.W.2
-
9
-
-
0040622388
-
Uniqueness of limit cycles for a predator-prey system of Holling and Leslie type
-
HSU, S. B. & HUANG, T. W. (1998) Uniqueness of limit cycles for a predator-prey system of Holling and Leslie type. Can. Appl. Math. Quart., 6, 91-117.
-
(1998)
Can. Appl. Math. Quart.
, vol.6
, pp. 91-117
-
-
Hsu, S.B.1
Huang, T.W.2
-
10
-
-
0011746590
-
Hopf bifurcation analysis for a predator-prey system of Holling and Leslie type
-
HSU, S. B. & HUANG, T. W. (1999) Hopf bifurcation analysis for a predator-prey system of Holling and Leslie type. Taiwanese J. Math., 3, 35-53.
-
(1999)
Taiwanese J. Math.
, vol.3
, pp. 35-53
-
-
Hsu, S.B.1
Huang, T.W.2
-
11
-
-
77954179459
-
Multiple bifurcation analysis and spatiotemporal patterns in a 1-D Gierer- Meinhardt model of morphogenesis
-
LIU, J., YI, F. & WEI, J. (2010) Multiple bifurcation analysis and spatiotemporal patterns in a 1-D Gierer- Meinhardt model of morphogenesis. Int. J. Bifurcation Chaos, 20, 1007-1025.
-
(2010)
Int. J. Bifurcation Chaos
, vol.20
, pp. 1007-1025
-
-
Liu, J.1
Yi, F.2
Wei, J.3
-
15
-
-
14644406942
-
Positive steady-states of the Holling-Tanner prey-predator model with diffusion
-
PENG, R. &WANG, M. X. (2005) Positive steady-states of the Holling-Tanner prey-predator model with diffusion. Proc. Roy. Soc. Edin., 135A, 149-164.
-
(2005)
Proc. Roy. Soc. Edin.
, vol.135 A
, pp. 149-164
-
-
Peng, R.1
Wang, M.X.2
-
16
-
-
33947158204
-
Global stability of the equilibrium of a diffusive Holling-Tanner prey-predator model
-
PENG, R. & WANG, M. X. (2007) Global stability of the equilibrium of a diffusive Holling-Tanner prey-predator model. Appl. Math. Lett., 20, 664-670.
-
(2007)
Appl. Math. Lett.
, vol.20
, pp. 664-670
-
-
Peng, R.1
Wang, M.X.2
-
17
-
-
34548687100
-
Diffusion-driven instability in the Gierer-Meinhardt model of morphogenesis
-
RUAN, S. G. (1998) Diffusion-driven instability in the Gierer-Meinhardt model of morphogenesis. Nat. Resour. Model., 11, 131-142.
-
(1998)
Nat. Resour. Model.
, vol.11
, pp. 131-142
-
-
Ruan, S.G.1
-
18
-
-
67650885603
-
Bifurcation in infinite dimensional spaces and applications in spational biological and chemical models
-
SHI, J. (2009) Bifurcation in infinite dimensional spaces and applications in spational biological and chemical models. Front. Math. China, 4, 407-424.
-
(2009)
Front. Math. China
, vol.4
, pp. 407-424
-
-
Shi, J.1
-
19
-
-
0000301505
-
The stability and intrinsic growth rates of prey and predator populations
-
TANNER, J. T. (1975) The stability and intrinsic growth rates of prey and predator populations. Ecology, 56, 855- 867.
-
(1975)
Ecology
, vol.56
, pp. 855-867
-
-
Tanner, J.T.1
-
20
-
-
0002011401
-
The chemical basis of morphogenesis
-
TURING, A. M. (1952) The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B, 237, 37-72.
-
(1952)
Philos. Trans. R. Soc. Lond. B
, vol.237
, pp. 37-72
-
-
Turing, A.M.1
-
22
-
-
77955519109
-
Spatiotemporal pattern formation and multiple bifurcations in a diffusive bimolecular model
-
YI, F., LIU, J.&WEI, J. (2010) Spatiotemporal pattern formation and multiple bifurcations in a diffusive bimolecular model. Nonlinear Anal. B Real World Appl., 11, 3770-3781.
-
(2010)
Nonlinear Anal. B Real World Appl.
, vol.11
, pp. 3770-3781
-
-
Yi, F.1
Liu, J.2
Wei, J.3
-
23
-
-
38949167125
-
Diffusion-driven instability and bifurcation in the Lengyel-Epstein system
-
YI, F., WEI, J. & SHI, J. (2008) Diffusion-driven instability and bifurcation in the Lengyel-Epstein system. Nonlinear Anal. B Real World Appl., 9, 1038-1051.
-
(2008)
Nonlinear Anal. B Real World Appl.
, vol.9
, pp. 1038-1051
-
-
Yi, F.1
Wei, J.2
Shi, J.3
-
24
-
-
58749112528
-
Bifurcation and spatiotemporal patterns in a homogeneous diffusive predatorprey system
-
YI, F., WEI, J. & SHI, J. (2009a) Bifurcation and spatiotemporal patterns in a homogeneous diffusive predatorprey system. J. Differ. Equ., 246, 1944-1977.
-
(2009)
J. Differ. Equ.
, vol.246
, pp. 1944-1977
-
-
Yi, F.1
Wei, J.2
Shi, J.3
-
25
-
-
55649115788
-
Global asymptotical behavior of the Lengyel-Epstein system
-
YI, F., WEI, J. & SHI, J. (2009b) Global asymptotical behavior of the Lengyel-Epstein system. Appl. Math. Lett., 22, 52-55.
-
(2009)
Appl. Math. Lett.
, vol.22
, pp. 52-55
-
-
Yi, F.1
Wei, J.2
Shi, J.3
|