메뉴 건너뛰기




Volumn 78, Issue 2, 2013, Pages 287-306

Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model

Author keywords

Holling type II functional response; Hopf bifurcation; prey predator system; reaction diffusion model; Turing instability

Indexed keywords

BIFURCATING PERIODIC SOLUTIONS; FUNCTIONAL RESPONSE; HOPF BIFURCATION ANALYSIS; NEUMANN BOUNDARY CONDITION; PARTIAL DIFFERENTIAL EQUATIONS (PDE); PREY-PREDATOR SYSTEMS; REACTION-DIFFUSION MODELS; TURING INSTABILITY;

EID: 84875676938     PISSN: 02724960     EISSN: 14643634     Source Type: Journal    
DOI: 10.1093/imamat/hxr050     Document Type: Article
Times cited : (120)

References (25)
  • 2
    • 0017676561 scopus 로고
    • The Hopf bifurcation theorem in infinite dimensions
    • CRANDALL, M. G. & RABINOWITZ, P. H. (1977) The Hopf bifurcation theorem in infinite dimensions. Arch. Ration. Mech. Anal., 67, 53-72.
    • (1977) Arch. Ration. Mech. Anal. , vol.67 , pp. 53-72
    • Crandall, M.G.1    Rabinowitz, P.H.2
  • 3
    • 3343010401 scopus 로고    scopus 로고
    • A diffusive predator-prey model in heterogeneous environment
    • DU, Y. & HSU, S. B. (2004) A diffusive predator-prey model in heterogeneous environment. J. Differ. Equ., 203, 331-364.
    • (2004) J. Differ. Equ. , vol.203 , pp. 331-364
    • Du, Y.1    Hsu, S.B.2
  • 4
    • 0038652547 scopus 로고    scopus 로고
    • Limit cycles in the Holling-Tanner model
    • GASULL, A., KOOIJ, R. E. & TORRGROSA, J. (1997) Limit cycles in the Holling-Tanner model. Publ. Mat., 41, 149-167.
    • (1997) Publ. Mat. , vol.41 , pp. 149-167
    • Gasull, A.1    Kooij, R.E.2    Torrgrosa, J.3
  • 6
    • 64049107266 scopus 로고    scopus 로고
    • Hopf bifurcation analysis of a reaction-diffusion Sel'kov system
    • HAN, W. & BAO, Z. (2009) Hopf bifurcation analysis of a reaction-diffusion Sel'kov system. J. Math. Anal. Appl., 356, 633-641.
    • (2009) J. Math. Anal. Appl. , vol.356 , pp. 633-641
    • Han, W.1    Bao, Z.2
  • 8
    • 0029325665 scopus 로고
    • Global stability for a class of predator-prey system
    • HSU, S. B. & HUANG, T. W. (1995) Global stability for a class of predator-prey system. SIAM J. Appl. Math., 55, 763-783.
    • (1995) SIAM J. Appl. Math. , vol.55 , pp. 763-783
    • Hsu, S.B.1    Huang, T.W.2
  • 9
    • 0040622388 scopus 로고    scopus 로고
    • Uniqueness of limit cycles for a predator-prey system of Holling and Leslie type
    • HSU, S. B. & HUANG, T. W. (1998) Uniqueness of limit cycles for a predator-prey system of Holling and Leslie type. Can. Appl. Math. Quart., 6, 91-117.
    • (1998) Can. Appl. Math. Quart. , vol.6 , pp. 91-117
    • Hsu, S.B.1    Huang, T.W.2
  • 10
    • 0011746590 scopus 로고    scopus 로고
    • Hopf bifurcation analysis for a predator-prey system of Holling and Leslie type
    • HSU, S. B. & HUANG, T. W. (1999) Hopf bifurcation analysis for a predator-prey system of Holling and Leslie type. Taiwanese J. Math., 3, 35-53.
    • (1999) Taiwanese J. Math. , vol.3 , pp. 35-53
    • Hsu, S.B.1    Huang, T.W.2
  • 11
    • 77954179459 scopus 로고    scopus 로고
    • Multiple bifurcation analysis and spatiotemporal patterns in a 1-D Gierer- Meinhardt model of morphogenesis
    • LIU, J., YI, F. & WEI, J. (2010) Multiple bifurcation analysis and spatiotemporal patterns in a 1-D Gierer- Meinhardt model of morphogenesis. Int. J. Bifurcation Chaos, 20, 1007-1025.
    • (2010) Int. J. Bifurcation Chaos , vol.20 , pp. 1007-1025
    • Liu, J.1    Yi, F.2    Wei, J.3
  • 15
    • 14644406942 scopus 로고    scopus 로고
    • Positive steady-states of the Holling-Tanner prey-predator model with diffusion
    • PENG, R. &WANG, M. X. (2005) Positive steady-states of the Holling-Tanner prey-predator model with diffusion. Proc. Roy. Soc. Edin., 135A, 149-164.
    • (2005) Proc. Roy. Soc. Edin. , vol.135 A , pp. 149-164
    • Peng, R.1    Wang, M.X.2
  • 16
    • 33947158204 scopus 로고    scopus 로고
    • Global stability of the equilibrium of a diffusive Holling-Tanner prey-predator model
    • PENG, R. & WANG, M. X. (2007) Global stability of the equilibrium of a diffusive Holling-Tanner prey-predator model. Appl. Math. Lett., 20, 664-670.
    • (2007) Appl. Math. Lett. , vol.20 , pp. 664-670
    • Peng, R.1    Wang, M.X.2
  • 17
    • 34548687100 scopus 로고    scopus 로고
    • Diffusion-driven instability in the Gierer-Meinhardt model of morphogenesis
    • RUAN, S. G. (1998) Diffusion-driven instability in the Gierer-Meinhardt model of morphogenesis. Nat. Resour. Model., 11, 131-142.
    • (1998) Nat. Resour. Model. , vol.11 , pp. 131-142
    • Ruan, S.G.1
  • 18
    • 67650885603 scopus 로고    scopus 로고
    • Bifurcation in infinite dimensional spaces and applications in spational biological and chemical models
    • SHI, J. (2009) Bifurcation in infinite dimensional spaces and applications in spational biological and chemical models. Front. Math. China, 4, 407-424.
    • (2009) Front. Math. China , vol.4 , pp. 407-424
    • Shi, J.1
  • 19
    • 0000301505 scopus 로고
    • The stability and intrinsic growth rates of prey and predator populations
    • TANNER, J. T. (1975) The stability and intrinsic growth rates of prey and predator populations. Ecology, 56, 855- 867.
    • (1975) Ecology , vol.56 , pp. 855-867
    • Tanner, J.T.1
  • 20
    • 0002011401 scopus 로고
    • The chemical basis of morphogenesis
    • TURING, A. M. (1952) The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B, 237, 37-72.
    • (1952) Philos. Trans. R. Soc. Lond. B , vol.237 , pp. 37-72
    • Turing, A.M.1
  • 22
    • 77955519109 scopus 로고    scopus 로고
    • Spatiotemporal pattern formation and multiple bifurcations in a diffusive bimolecular model
    • YI, F., LIU, J.&WEI, J. (2010) Spatiotemporal pattern formation and multiple bifurcations in a diffusive bimolecular model. Nonlinear Anal. B Real World Appl., 11, 3770-3781.
    • (2010) Nonlinear Anal. B Real World Appl. , vol.11 , pp. 3770-3781
    • Yi, F.1    Liu, J.2    Wei, J.3
  • 23
    • 38949167125 scopus 로고    scopus 로고
    • Diffusion-driven instability and bifurcation in the Lengyel-Epstein system
    • YI, F., WEI, J. & SHI, J. (2008) Diffusion-driven instability and bifurcation in the Lengyel-Epstein system. Nonlinear Anal. B Real World Appl., 9, 1038-1051.
    • (2008) Nonlinear Anal. B Real World Appl. , vol.9 , pp. 1038-1051
    • Yi, F.1    Wei, J.2    Shi, J.3
  • 24
    • 58749112528 scopus 로고    scopus 로고
    • Bifurcation and spatiotemporal patterns in a homogeneous diffusive predatorprey system
    • YI, F., WEI, J. & SHI, J. (2009a) Bifurcation and spatiotemporal patterns in a homogeneous diffusive predatorprey system. J. Differ. Equ., 246, 1944-1977.
    • (2009) J. Differ. Equ. , vol.246 , pp. 1944-1977
    • Yi, F.1    Wei, J.2    Shi, J.3
  • 25
    • 55649115788 scopus 로고    scopus 로고
    • Global asymptotical behavior of the Lengyel-Epstein system
    • YI, F., WEI, J. & SHI, J. (2009b) Global asymptotical behavior of the Lengyel-Epstein system. Appl. Math. Lett., 22, 52-55.
    • (2009) Appl. Math. Lett. , vol.22 , pp. 52-55
    • Yi, F.1    Wei, J.2    Shi, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.