-
2
-
-
34248575106
-
-
10.1063/1.2721554
-
L. Berthier, G. Biroli, J.-P. Bouchaud, J. W. Kob, K. Miyazaki, and D. R. Reichman, J. Phys. Chem. 126, 184503 (2007). 10.1063/1.2721554
-
(2007)
J. Phys. Chem
, vol.126
, pp. 184503
-
-
Berthier, L.1
Biroli, G.2
Bouchaud, J.-P.3
Kob, J.W.4
Miyazaki, K.5
Reichman, D.R.6
-
5
-
-
34047135003
-
-
10.1146/annurev.physchem.58.032806.104653
-
V. Lubchenko and P. G. Wolynes, Ann. Rev. Phys. Chem. 58, 235 (2006). 10.1146/annurev.physchem.58.032806.104653
-
(2006)
Ann. Rev. Phys. Chem
, vol.58
, pp. 235
-
-
Lubchenko, V.1
Wolynes, P.G.2
-
15
-
-
0037425992
-
-
10.1063/1.1534831
-
J. P. K. Doye, D. J. Wales, F. H. M. Zetterling, and M. Dzugutov, J. Chem. Phys. 118, 2792 (2003). 10.1063/1.1534831
-
(2003)
J. Chem. Phys
, vol.118
, pp. 2792
-
-
Doye, J.P.K.1
Wales, D.J.2
Zetterling, F.H.M.3
Dzugutov, M.4
-
16
-
-
4243306133
-
-
10.1103/PhysRevLett.73.1376
-
W. Kob and H. C. Andersen, Phys. Rev. Lett. 73, 1376 (1994). 10.1103/PhysRevLett.73.1376
-
(1994)
Phys. Rev. Lett
, vol.73
, pp. 1376
-
-
Kob, W.1
Andersen, H.C.2
-
19
-
-
36049041600
-
-
10.1063/1.2780863
-
K. S. Schweizer, J. Chem. Phys. 127, 164506 (2007). 10.1063/1.2780863
-
(2007)
J. Chem. Phys
, vol.127
, pp. 164506
-
-
Schweizer, K.S.1
-
23
-
-
84875768000
-
-
The hyperuniformity of maximally random jammed packings has been extended to apply to polydisperse spheres and nonspherical objects in terms of the spectral density χ(k)
-
The hyperuniformity of maximally random jammed packings has been extended to apply to polydisperse spheres and nonspherical objects in terms of the spectral density χ(k)
-
-
-
-
26
-
-
0037548528
-
-
10.1063/1.1673684
-
R. J. Baxter, J. Chem. Phys. 52, 4559 (1970). 10.1063/1.1673684
-
(1970)
J. Chem. Phys
, vol.52
, pp. 4559
-
-
Baxter, R.J.1
-
27
-
-
84875785643
-
-
Using expression to write S(k) for a single configuration, we can express S(k) as the product of a non-zero vector times its Hermitian transpose, the rank of which (equal to the number of non-zero eigenvalues) is 1. Taking an ensemble average of Eq. breaks this symmetry, since the sum of M vectors multiplied by their transpose has a rank of M if the vectors are linearly independent
-
Using expression to write S(k) for a single configuration, we can express S(k) as the product of a non-zero vector times its Hermitian transpose, the rank of which (equal to the number of non-zero eigenvalues) is 1. Taking an ensemble average of Eq. breaks this symmetry, since the sum of M vectors multiplied by their transpose has a rank of M if the vectors are linearly independent
-
-
-
-
28
-
-
0001538909
-
-
10.1103/PhysRevA.31.1695
-
W. G. Hoover, Phys. Rev. A 31, 1695 (1985). 10.1103/PhysRevA.31.1695
-
(1985)
Phys. Rev. A
, vol.31
, pp. 1695
-
-
Hoover, W.G.1
-
29
-
-
36849104022
-
-
10.1063/1.1673203
-
B. Widom, J. Chem. Phys. 52, 3888 (1970). 10.1063/1.1673203
-
(1970)
J. Chem. Phys
, vol.52
, pp. 3888
-
-
Widom, B.1
-
31
-
-
84875762554
-
-
Note that we found a very small systematic error due to a combination of the following factors: the thermostat, relaxation during the compressibility computation, and the finite difference method. To correct for this systematic error, we added to the computed value of X a constant such as to ensure that X 0 for the high-temperature liquid phase, for which the compressibility relations are satisfied. This constant is equal to 0.05 for the Z2 Dzugutov potential, and 0.015 for the Kob-Andersen potential
-
Note that we found a very small systematic error due to a combination of the following factors: the thermostat, relaxation during the compressibility computation, and the finite difference method. To correct for this systematic error, we added to the computed value of X a constant such as to ensure that X 0 for the high-temperature liquid phase, for which the compressibility relations are satisfied. This constant is equal to 0.05 for the Z2 Dzugutov potential, and 0.015 for the Kob-Andersen potential
-
-
-
-
32
-
-
63749100271
-
-
10.1088/0953-8984/21/3/035117
-
R. Brüning, D. A. St-Onge, S. Patterson, and W. Kob, J. Phys.: Condens. Matter 21, 035117 (2009). 10.1088/0953-8984/21/3/035117
-
(2009)
J. Phys.: Condens. Matter
, vol.21
, pp. 035117
-
-
Brüning, R.1
St-Onge, D.A.2
Patterson, S.3
Kob, W.4
-
35
-
-
84875785459
-
-
Proceedings of the Minerals, Metals and Materials Society, March 11-15, Orlando, FL (published online at)
-
G. Long, R. Xie, S. Weigand, S. Moss, S. Roorda, S. Torquato, and P. Steinhardt, in Proceedings of the Minerals, Metals and Materials Society, March 11-15, 2012, Orlando, FL (published online at http://www.programmaster.org/PM/ PM.nsf/ApprovedAbstracts/87AA55590C28BE69852578CD006C12AA?OpenDocument);
-
(2012)
-
-
Long, G.1
Xie, R.2
Weigand, S.3
Moss, S.4
Roorda, S.5
Torquato, S.6
Steinhardt, P.7
-
36
-
-
84875779473
-
-
(unpublished)
-
R. Xie, G. G. Long, S. J. Weigand, S. C. Moss, T. Carvalho, S. Roorda, M. Hejna, S. Torquato, and P. J. Steinhardt, Hyperuniformity in amorphous silicon: measurement of the infinite-wavelength limit of the structure factor. (unpublished)
-
Hyperuniformity in Amorphous Silicon: Measurement of the Infinite-wavelength Limit of the Structure Factor
-
-
Xie, R.1
Long, G.G.2
Weigand, S.J.3
Moss, S.C.4
Carvalho, T.5
Roorda, S.6
Hejna, M.7
Torquato, S.8
Steinhardt, P.J.9
-
37
-
-
0004080557
-
-
(Princeton University Press, Princeton, NJ)
-
P. G. Debenedetti, Metastable Liquids (Princeton University Press, Princeton, NJ, 1996)
-
(1996)
Metastable Liquids
-
-
Debenedetti, P.G.1
|