메뉴 건너뛰기




Volumn 138, Issue 12, 2013, Pages

Nonequilibrium static growing length scales in supercooled liquids on approaching the glass transition

Author keywords

[No Author keywords available]

Indexed keywords

CHARACTERISTIC RELAXATION TIME; DIRECT CORRELATION FUNCTIONS; MAXIMALLY RANDOM JAMMED STATE; ORNSTEIN-ZERNIKE INTEGRAL EQUATIONS; POINT CONFIGURATIONS; STRUCTURE FACTORS; SUPERCOOLED LIQUIDS; THERMAL EQUILIBRIUMS;

EID: 84875662141     PISSN: 00219606     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.4769422     Document Type: Article
Times cited : (43)

References (37)
  • 4
  • 5
    • 34047135003 scopus 로고    scopus 로고
    • 10.1146/annurev.physchem.58.032806.104653
    • V. Lubchenko and P. G. Wolynes, Ann. Rev. Phys. Chem. 58, 235 (2006). 10.1146/annurev.physchem.58.032806.104653
    • (2006) Ann. Rev. Phys. Chem , vol.58 , pp. 235
    • Lubchenko, V.1    Wolynes, P.G.2
  • 12
  • 16
    • 4243306133 scopus 로고
    • 10.1103/PhysRevLett.73.1376
    • W. Kob and H. C. Andersen, Phys. Rev. Lett. 73, 1376 (1994). 10.1103/PhysRevLett.73.1376
    • (1994) Phys. Rev. Lett , vol.73 , pp. 1376
    • Kob, W.1    Andersen, H.C.2
  • 19
    • 36049041600 scopus 로고    scopus 로고
    • 10.1063/1.2780863
    • K. S. Schweizer, J. Chem. Phys. 127, 164506 (2007). 10.1063/1.2780863
    • (2007) J. Chem. Phys , vol.127 , pp. 164506
    • Schweizer, K.S.1
  • 23
    • 84875768000 scopus 로고    scopus 로고
    • The hyperuniformity of maximally random jammed packings has been extended to apply to polydisperse spheres and nonspherical objects in terms of the spectral density χ(k)
    • The hyperuniformity of maximally random jammed packings has been extended to apply to polydisperse spheres and nonspherical objects in terms of the spectral density χ(k)
  • 26
    • 0037548528 scopus 로고
    • 10.1063/1.1673684
    • R. J. Baxter, J. Chem. Phys. 52, 4559 (1970). 10.1063/1.1673684
    • (1970) J. Chem. Phys , vol.52 , pp. 4559
    • Baxter, R.J.1
  • 27
    • 84875785643 scopus 로고    scopus 로고
    • Using expression to write S(k) for a single configuration, we can express S(k) as the product of a non-zero vector times its Hermitian transpose, the rank of which (equal to the number of non-zero eigenvalues) is 1. Taking an ensemble average of Eq. breaks this symmetry, since the sum of M vectors multiplied by their transpose has a rank of M if the vectors are linearly independent
    • Using expression to write S(k) for a single configuration, we can express S(k) as the product of a non-zero vector times its Hermitian transpose, the rank of which (equal to the number of non-zero eigenvalues) is 1. Taking an ensemble average of Eq. breaks this symmetry, since the sum of M vectors multiplied by their transpose has a rank of M if the vectors are linearly independent
  • 28
    • 0001538909 scopus 로고
    • 10.1103/PhysRevA.31.1695
    • W. G. Hoover, Phys. Rev. A 31, 1695 (1985). 10.1103/PhysRevA.31.1695
    • (1985) Phys. Rev. A , vol.31 , pp. 1695
    • Hoover, W.G.1
  • 29
    • 36849104022 scopus 로고
    • 10.1063/1.1673203
    • B. Widom, J. Chem. Phys. 52, 3888 (1970). 10.1063/1.1673203
    • (1970) J. Chem. Phys , vol.52 , pp. 3888
    • Widom, B.1
  • 31
    • 84875762554 scopus 로고    scopus 로고
    • Note that we found a very small systematic error due to a combination of the following factors: the thermostat, relaxation during the compressibility computation, and the finite difference method. To correct for this systematic error, we added to the computed value of X a constant such as to ensure that X 0 for the high-temperature liquid phase, for which the compressibility relations are satisfied. This constant is equal to 0.05 for the Z2 Dzugutov potential, and 0.015 for the Kob-Andersen potential
    • Note that we found a very small systematic error due to a combination of the following factors: the thermostat, relaxation during the compressibility computation, and the finite difference method. To correct for this systematic error, we added to the computed value of X a constant such as to ensure that X 0 for the high-temperature liquid phase, for which the compressibility relations are satisfied. This constant is equal to 0.05 for the Z2 Dzugutov potential, and 0.015 for the Kob-Andersen potential
  • 35
    • 84875785459 scopus 로고    scopus 로고
    • Proceedings of the Minerals, Metals and Materials Society, March 11-15, Orlando, FL (published online at)
    • G. Long, R. Xie, S. Weigand, S. Moss, S. Roorda, S. Torquato, and P. Steinhardt, in Proceedings of the Minerals, Metals and Materials Society, March 11-15, 2012, Orlando, FL (published online at http://www.programmaster.org/PM/ PM.nsf/ApprovedAbstracts/87AA55590C28BE69852578CD006C12AA?OpenDocument);
    • (2012)
    • Long, G.1    Xie, R.2    Weigand, S.3    Moss, S.4    Roorda, S.5    Torquato, S.6    Steinhardt, P.7
  • 37
    • 0004080557 scopus 로고    scopus 로고
    • (Princeton University Press, Princeton, NJ)
    • P. G. Debenedetti, Metastable Liquids (Princeton University Press, Princeton, NJ, 1996)
    • (1996) Metastable Liquids
    • Debenedetti, P.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.