-
1
-
-
48249125815
-
Total variation regularization for image denoising I
-
Allard W.K. Total variation regularization for image denoising I. SIAM J. Math. Anal. 2007, 39(4):1150-1190.
-
(2007)
SIAM J. Math. Anal.
, vol.39
, Issue.4
, pp. 1150-1190
-
-
Allard, W.K.1
-
2
-
-
77954956923
-
Total variation regularization for image denoising II
-
Allard W.K. Total variation regularization for image denoising II. SIAM J. Imaging Sci. 2008, 1(4):400-417.
-
(2008)
SIAM J. Imaging Sci.
, vol.1
, Issue.4
, pp. 400-417
-
-
Allard, W.K.1
-
3
-
-
79751482313
-
Total variation regularization for image denoising III
-
Allard W.K. Total variation regularization for image denoising III. SIAM J. Imaging Sci. 2009, 2(2):532-568.
-
(2009)
SIAM J. Imaging Sci.
, vol.2
, Issue.2
, pp. 532-568
-
-
Allard, W.K.1
-
4
-
-
0026883172
-
Digital filters as absolute norm regularizers
-
Alliney S. Digital filters as absolute norm regularizers. IEEE Trans. Signal Process. 1992, 40(6):1548-1562.
-
(1992)
IEEE Trans. Signal Process.
, vol.40
, Issue.6
, pp. 1548-1562
-
-
Alliney, S.1
-
5
-
-
0030169670
-
Recursive median filters of increasing order: a variational approach
-
Alliney S. Recursive median filters of increasing order: a variational approach. IEEE Trans. Signal Process. 1996, 44(6):1346-1354.
-
(1996)
IEEE Trans. Signal Process.
, vol.44
, Issue.6
, pp. 1346-1354
-
-
Alliney, S.1
-
6
-
-
0031124308
-
A property of the minimum vectors of a regularizing functional defined by means of the absolute norm
-
Alliney S. A property of the minimum vectors of a regularizing functional defined by means of the absolute norm. IEEE Trans. Signal Process. 1997, 45(4):913-917.
-
(1997)
IEEE Trans. Signal Process.
, vol.45
, Issue.4
, pp. 913-917
-
-
Alliney, S.1
-
7
-
-
0040803571
-
Lower semicontinuity problems in Sobolev spaces with respect to a measure
-
Ambrosio L., Buttazzo G., Fonseca G. Lower semicontinuity problems in Sobolev spaces with respect to a measure. J. Math. Pures Appl. 1996, 75:211-224.
-
(1996)
J. Math. Pures Appl.
, vol.75
, pp. 211-224
-
-
Ambrosio, L.1
Buttazzo, G.2
Fonseca, G.3
-
8
-
-
0001243359
-
Minimizing total variation flow
-
Andreu F., Ballester C., Caselles V., Mazón J.M. Minimizing total variation flow. Differential Integral Equations 2001, 14(3):321-360.
-
(2001)
Differential Integral Equations
, vol.14
, Issue.3
, pp. 321-360
-
-
Andreu, F.1
Ballester, C.2
Caselles, V.3
Mazón, J.M.4
-
9
-
-
0036473319
-
Some qualitiative properties for the total variation flow
-
Andreu F., Caselles V., Díaz J.I., Mazón J.M. Some qualitiative properties for the total variation flow. J. Funct. Anal. 2002, 188(2):516-547.
-
(2002)
J. Funct. Anal.
, vol.188
, Issue.2
, pp. 516-547
-
-
Andreu, F.1
Caselles, V.2
Díaz, J.I.3
Mazón, J.M.4
-
10
-
-
13844274982
-
The minimizing total variation flow with measure initial conditions
-
Andreu F., Mazón J.M., Moll J.S., Caselles V. The minimizing total variation flow with measure initial conditions. Commun. Contemp. Math. 2004, 6(3):431-494.
-
(2004)
Commun. Contemp. Math.
, vol.6
, Issue.3
, pp. 431-494
-
-
Andreu, F.1
Mazón, J.M.2
Moll, J.S.3
Caselles, V.4
-
11
-
-
14644409526
-
Parabolic Quasilinear Equations Minimizing Linear Growth Functionals
-
Birkhäuser, Basel, xiv, ISNB 3-7643-6691-2/HBK
-
Andreu-Vaillo Fuensanta, Caselles Vincint, Mazón José M. Parabolic Quasilinear Equations Minimizing Linear Growth Functionals. Progress in Mathematics (Boston, Mass.) 2004, vol. 223:340. Birkhäuser, Basel, xiv, ISNB 3-7643-6691-2/HBK.
-
(2004)
Progress in Mathematics (Boston, Mass.)
, vol.223
, pp. 340
-
-
Andreu-Vaillo, F.1
Caselles, V.2
Mazón José, M.3
-
14
-
-
0031333506
-
Total variation image restoration: numerical methods and extensions
-
P. Blomgren, T. Chan, P. Mulet, C.K. Wong, Total variation image restoration: numerical methods and extensions, in: Proceedings of the 1997 IEEE International Conference on Image Processing, vol. 3, pp. 384-387.
-
Proceedings of the 1997 IEEE International Conference on Image Processing
, vol.3
, pp. 384-387
-
-
Blomgren, P.1
Chan, T.2
Mulet, P.3
Wong, C.K.4
-
16
-
-
0002434869
-
Asymptotic convergence of nonlinear contraction semigroups in Hilbert space
-
Brück R.E. Asymptotic convergence of nonlinear contraction semigroups in Hilbert space. J. Funct. Anal. 1975, 18:15-26.
-
(1975)
J. Funct. Anal.
, vol.18
, pp. 15-26
-
-
Brück, R.E.1
-
17
-
-
0031492191
-
Image recovery via total variation minimization and related problems
-
Chambolle A., Lions P.L. Image recovery via total variation minimization and related problems. Numer. Math. 1997, 76:167-188.
-
(1997)
Numer. Math.
, vol.76
, pp. 167-188
-
-
Chambolle, A.1
Lions, P.L.2
-
18
-
-
27844461945
-
Aspects of total variation regularized L1 function approximation
-
Chan T., Esedoglu S. Aspects of total variation regularized L1 function approximation. SIAM J. Appl. Math. 2005, 65(5):1817-1837.
-
(2005)
SIAM J. Appl. Math.
, vol.65
, Issue.5
, pp. 1817-1837
-
-
Chan, T.1
Esedoglu, S.2
-
19
-
-
33747163537
-
Variable exponent, linear growth functionals in image restoration
-
Chen Y., Levine S., Rao M. Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 2006, 66(4):1383-1406.
-
(2006)
SIAM J. Appl. Math.
, vol.66
, Issue.4
, pp. 1383-1406
-
-
Chen, Y.1
Levine, S.2
Rao, M.3
-
20
-
-
0036700323
-
Adaptive total variation for image restoration in BV space
-
Chen Y., Wunderli T. Adaptive total variation for image restoration in BV space. J. Math. Anal. Appl. 2002, 272:117-137.
-
(2002)
J. Math. Anal. Appl.
, vol.272
, pp. 117-137
-
-
Chen, Y.1
Wunderli, T.2
-
21
-
-
0001020536
-
Convex functions of a measure and applications
-
Demengel F., Temam R. Convex functions of a measure and applications. Indiana Univ. Math. J. 1984, 33(5):673-709.
-
(1984)
Indiana Univ. Math. J.
, vol.33
, Issue.5
, pp. 673-709
-
-
Demengel, F.1
Temam, R.2
-
22
-
-
0030212858
-
Recovery of blocky images from noisy and blurred data
-
Dobson D., Santosa F. Recovery of blocky images from noisy and blurred data. SIAM J. Appl. Math. 1996, 56:1181-1198.
-
(1996)
SIAM J. Appl. Math.
, vol.56
, pp. 1181-1198
-
-
Dobson, D.1
Santosa, F.2
-
23
-
-
84976641351
-
Extensions of smoothing via taught strings
-
Dümbgen L., Kovac A. Extensions of smoothing via taught strings. Electron. J. Stat. 2009, 3:41-75.
-
(2009)
Electron. J. Stat.
, vol.3
, pp. 41-75
-
-
Dümbgen, L.1
Kovac, A.2
-
25
-
-
0004193690
-
Minimial Surfaces and Functions of Bounded Variation
-
Birkhäuser, Basel
-
Giusti F. Minimial Surfaces and Functions of Bounded Variation. Monographs Math. 1984, vol. 80. Birkhäuser, Basel.
-
(1984)
Monographs Math.
, vol.80
-
-
Giusti, F.1
-
28
-
-
0040332003
-
Quantile regression
-
Fall
-
Koenker R., Hallock K. Quantile regression. J. Econ. Perspect. 2001, 15(4):143-156. Fall.
-
(2001)
J. Econ. Perspect.
, vol.15
, Issue.4
, pp. 143-156
-
-
Koenker, R.1
Hallock, K.2
-
30
-
-
8744270279
-
Decomposition of images by the anisotropic Rudin-Osher-Fatemi model
-
Osher S., Esedoglu S. Decomposition of images by the anisotropic Rudin-Osher-Fatemi model. Comm. Pure Appl. Math. 2004, 57(12):1606-1626.
-
(2004)
Comm. Pure Appl. Math.
, vol.57
, Issue.12
, pp. 1606-1626
-
-
Osher, S.1
Esedoglu, S.2
-
31
-
-
33745090300
-
G-Norm Properties of Bounded Variation Regularization
-
Osher S., Scherzer O. G-Norm Properties of Bounded Variation Regularization. Commun. Math. Sci. 2004, 2(2):237-254.
-
(2004)
Commun. Math. Sci.
, vol.2
, Issue.2
, pp. 237-254
-
-
Osher, S.1
Scherzer, O.2
-
32
-
-
84996774871
-
Total variation based image restoration with free local constraints
-
Austin, TX
-
L.I. Rudin, S. Osher, Total variation based image restoration with free local constraints, in: Proc. ICIP IEEE Int. Conf. on Image Processing, Austin, TX, 1994, pp. 31-35.
-
(1994)
Proc. ICIP IEEE Int. Conf. on Image Processing
, pp. 31-35
-
-
Rudin, L.I.1
Osher, S.2
-
33
-
-
44049111982
-
Nonlinear total variation based noise removal algorithms
-
Rudin L.I., Osher S., Fatemi E. Nonlinear total variation based noise removal algorithms. Phys. D 1992, 60:259-268.
-
(1992)
Phys. D
, vol.60
, pp. 259-268
-
-
Rudin, L.I.1
Osher, S.2
Fatemi, E.3
-
35
-
-
0011021531
-
A study in the BV space of a denoising-deblurring variational problem
-
Vese L. A study in the BV space of a denoising-deblurring variational problem. Appl. Math. Optim. 2001, 44:131-161.
-
(2001)
Appl. Math. Optim.
, vol.44
, pp. 131-161
-
-
Vese, L.1
-
36
-
-
72149124788
-
On time flows of minimizers of general convex functionals of linear growth with variable exponent in BV space and stability of pseudosolutions
-
Wunderli T. On time flows of minimizers of general convex functionals of linear growth with variable exponent in BV space and stability of pseudosolutions. J. Math. Anal. Appl. 2010, 364(2):591-598.
-
(2010)
J. Math. Anal. Appl.
, vol.364
, Issue.2
, pp. 591-598
-
-
Wunderli, T.1
-
37
-
-
0026857269
-
An evolution problem for plastic antiplanar shear
-
Zhou X. An evolution problem for plastic antiplanar shear. Appl. Math. Optim. 1992, 25:263-285.
-
(1992)
Appl. Math. Optim.
, vol.25
, pp. 263-285
-
-
Zhou, X.1
|