메뉴 건너뛰기




Volumn 42, Issue 1, 2013, Pages 34-43

A harmonic analysis model of small target detection of hyperspectral imagery

Author keywords

CEM; Harmonic analysis; Hyperspectral remote sensing; Small target detection; Whitening processing

Indexed keywords

BACKGROUND INFORMATION; CEM; CONSTRAINED ENERGY MINIMIZATION; HIGH SPATIAL RESOLUTION IMAGES; HYPER-SPECTRAL IMAGERIES; HYPERSPECTRAL REMOTE SENSING; MISSED DETECTIONS; SMALL TARGET DETECTION;

EID: 84875286655     PISSN: 10011595     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (6)

References (23)
  • 1
    • 0003954289 scopus 로고
    • Detection and classification of sub-pixel spectral signatures in hyperspectral image sequences
    • Baltimore: University of Maryland
    • HARSANYI J C. Detection and Classification of Sub-pixel Spectral Signatures in Hyperspectral Image Sequences [D]. Baltimore: University of Maryland, 1993.
    • (1993)
    • Harsanyi, J.C.1
  • 2
    • 84875357664 scopus 로고    scopus 로고
    • Sub-pixel target detection from hyperspectral remote sensing imagery
    • Wuhan: Wuhan University
    • DU bo. Sub-pixel Target Detection from Hyperspectral Remote Sensing Imagery [D]. Wuhan: Wuhan University, 2010: 1-152.
    • (2010) , pp. 1-152
    • Du, B.1
  • 4
    • 84875325468 scopus 로고    scopus 로고
    • Target detection on hyperspectral imagery based on transformation of spectral dimensions
    • Beijing: Institute of Remote Sensing Applications of CAS
    • LIU Xiang. Target Detection on Hyperspectral Imagery Based on Transformation of Spectral Dimensions [D]. Beijing: Institute of Remote Sensing Applications of CAS, 2008: 1-182.
    • (2008) , pp. 1-182
    • Liu, X.1
  • 5
    • 34547765884 scopus 로고    scopus 로고
    • Target detection algorithm in hperspectral image based on CEM
    • XUN Lina, FANG Yonghua, LI Xin. Target Detection Algorithm in Hperspectral Image Based on CEM [J]. Opto-Electronic Engineering, 2007, 34(7): 18-21.
    • (2007) Opto-Electronic Engineering , vol.34 , Issue.7 , pp. 18-21
    • Xun, L.1    Fang, Y.2    Li, X.3
  • 7
    • 33846155856 scopus 로고    scopus 로고
    • CFAR target detection in unknown background based on subspace projection in aerial hyperspectral imagery
    • HE Lin, PAN Quan, ZHAO Yongqiang, et al. CFAR Target Detection in Unknown Background Based on Subspace Projection in Aerial Hyperspectral Imagery [J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(4): 657-662.
    • (2006) Acta Aeronautica et Astronautica Sinica , vol.27 , Issue.4 , pp. 657-662
    • He, L.1    Pan, Q.2    Zhao, Y.3
  • 8
    • 33646250213 scopus 로고    scopus 로고
    • A small targets detection approach based on anomaly distributing in hyperspectral imegery
    • LU Wei, YU Xuchu, LIU Juan, et al. A Small Targets Detection Approach Based on Anomaly Distributing in Hyperspectral Imegery [J]. Acta Geodaetica et Cartographica Sinica, 2006, 35(1): 40-45.
    • (2006) Acta Geodaetica et Cartographica Sinica , vol.35 , Issue.1 , pp. 40-45
    • Lu, W.1    Yu, X.2    Liu, J.3
  • 9
    • 0025508756 scopus 로고
    • Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution
    • REED I S, YU X. Adaptive Multiple-band CFAR Detection of an Optical Pattern with Unknown Spectral Distribution [J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990, 38(10): 1760-1770.
    • (1990) IEEE Transactions on Acoustics, Speech and Signal Processing , vol.38 , Issue.10 , pp. 1760-1770
    • Reed, I.S.1    Yu, X.2
  • 10
    • 35948989566 scopus 로고    scopus 로고
    • Target detection and classification for hyperspectral imagery
    • Beijing: Institute of Remote Sensing Applications of CAS
    • GENG Xiurui. Target Detection and Classification for Hyperspectral Imagery [D]. Beijing: Institute of Remote Sensing Applications of CAS, 2005: 1-104.
    • (2005) , pp. 1-104
    • Geng, X.1
  • 11
    • 67649575568 scopus 로고    scopus 로고
    • Basic theory of small target detecting of hyperspectral remote sensing imagery
    • GENG Xiurui, ZHAO Yongchao. Basic Theory of Small Target Detecting of Hyperspectral Remote Sensing Imagery [J]. Science in China: Series D, Earth Science, 2007, 37(8): 1081-1087.
    • (2007) Science in China: Series D, Earth Science , vol.37 , Issue.8 , pp. 1081-1087
    • Geng, X.1    Zhao, Y.2
  • 12
    • 40449129517 scopus 로고    scopus 로고
    • Feature mapping of hyperspectral images based on best basis of wavelet packet decomposition
    • YANG Keming, LI Hui, GUO Dazhi. Feature Mapping of Hyperspectral Images Based on Best Basis of Wavelet Packet Decomposition [J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(1): 54-58.
    • (2008) Acta Geodaetica et Cartographica Sinica , vol.37 , Issue.1 , pp. 54-58
    • Yang, K.1    Li, H.2    Guo, D.3
  • 13
    • 51149091872 scopus 로고    scopus 로고
    • A hyperspectral small target detection method based on outlier detection
    • LI Qingbo, LI Xiang, ZHANG Guangjun. A Hyperspectral Small Target Detection Method Based on Outlier Detection [J]. Spectroscopy and Spectral Analysis, 2008, 28(8): 1832-1836.
    • (2008) Spectroscopy and Spectral Analysis , vol.28 , Issue.8 , pp. 1832-1836
    • Li, Q.1    Li, X.2    Zhang, G.3
  • 15
    • 33751408845 scopus 로고    scopus 로고
    • A harmonic measuring approach based on multilayered feed forward neural network
    • TANG Shengqing, CHENG Xiaohua. A Harmonic Measuring Approach Based on Multilayered Feed Forward Neural Network [J]. Proceedings of the CSEE, 2006, 26(18): 90-94.
    • (2006) Proceedings of the CSEE , vol.26 , Issue.18 , pp. 90-94
    • Tang, S.1    Cheng, X.2
  • 18
    • 21444460280 scopus 로고    scopus 로고
    • A crop phenology detection method using time-series MODIS data
    • TOSHIHIRO S, MASAYUKI Y, HITOSHI T, et al. A Crop Phenology Detection Method Using Time-series MODIS Data [J]. Remote Sensing of Environment, 2005, 96(3/4): 366-374.
    • (2005) Remote Sensing of Environment , vol.96 , Issue.3-4 , pp. 366-374
    • Toshihiro, S.1    Masayuki, Y.2    Hitoshi, T.3
  • 19
    • 33845883788 scopus 로고    scopus 로고
    • A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data
    • BETHANY A B, ROBERT W J, JOHN F H, et al. A Curve Fitting Procedure to Derive Inter-annual Phenologies from Time Series of Noisy Satellite NDVI Data [J]. Remote Sensing of Environment, 2007, 106(2): 137-145.
    • (2007) Remote Sensing of Environment , vol.106 , Issue.2 , pp. 137-145
    • Bethany, A.B.1    Robert, W.J.2    John, F.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.