-
1
-
-
84948141376
-
A mixture approach to novelty detection using training data with outliers
-
Lauer M. A mixture approach to novelty detection using training data with outliers. Lecture Notes on Computer Science 1999, 2167:300-316.
-
(1999)
Lecture Notes on Computer Science
, vol.2167
, pp. 300-316
-
-
Lauer, M.1
-
3
-
-
84898941932
-
Support vector method for novelty detection
-
MIT Press, Cambridge, MA, S.A. Solla, T.K. Leen, K.-R. Müller (Eds.)
-
Schölkopf B., Williamson Robert C., Smola Alex J., Taylor John S., Platt John C. Support vector method for novelty detection. Advances in neural information processing systems 12 1999, 582-588. MIT Press, Cambridge, MA. S.A. Solla, T.K. Leen, K.-R. Müller (Eds.).
-
(1999)
Advances in neural information processing systems 12
, pp. 582-588
-
-
Schölkopf, B.1
Williamson, R.C.2
Smola, A.J.3
Taylor, J.S.4
Platt, J.C.5
-
4
-
-
0000487102
-
Estimating the support of a high-dimensional distribution
-
Scholkopf B., Platt John C., Shawe-Taylor John, Smola Alex J., Williamson Robert C. Estimating the support of a high-dimensional distribution. Neural Computation 2001, 13(7):1443-1471.
-
(2001)
Neural Computation
, vol.13
, Issue.7
, pp. 1443-1471
-
-
Scholkopf, B.1
Platt, J.C.2
Shawe-Taylor, J.3
Smola, A.J.4
Williamson, R.C.5
-
5
-
-
21844471761
-
Clustering of time-series subsequences is meaningless: implications for previous and future research
-
Keogh Eamonn J., Lin Jessica Clustering of time-series subsequences is meaningless: implications for previous and future research. Knowledge and Information Systems 2005, 8(2):154-177.
-
(2005)
Knowledge and Information Systems
, vol.8
, Issue.2
, pp. 154-177
-
-
Keogh, E.J.1
Lin, J.2
-
7
-
-
0141463039
-
Finding surprising patterns in a time series database in linear time and space
-
Edmonton, Alberta, Canada, ACM Press, New York, NY, USA, O.R. Zaïane, R. Goebel, D. Hand, D. Keim, N. Raymond (Eds.)
-
Keogh Eamonn J., Lonardi Stefano, Chiu Bill Yuan-chi Finding surprising patterns in a time series database in linear time and space. Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining 2002, 550-556. Edmonton, Alberta, Canada, ACM Press, New York, NY, USA. O.R. Zaïane, R. Goebel, D. Hand, D. Keim, N. Raymond (Eds.).
-
(2002)
Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining
, pp. 550-556
-
-
Keogh, E.J.1
Lonardi, S.2
Chiu, B.Y.C.3
-
8
-
-
70350649248
-
Online novelty detection on temporal sequences
-
ACM Press, Washington, DC, USA, New York, NY, USA, T. Senator, P. Domingos, C. Faloutsos, L. Getoor (Eds.)
-
Ma J., Perkins S. Online novelty detection on temporal sequences. Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining 2003, 613-618. ACM Press, Washington, DC, USA, New York, NY, USA. T. Senator, P. Domingos, C. Faloutsos, L. Getoor (Eds.).
-
(2003)
Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining
, pp. 613-618
-
-
Ma, J.1
Perkins, S.2
-
9
-
-
0038297552
-
Mining deviants in a time series database
-
Morgan Kaufmann, Edinburgh, Scotland, UK, M.P. Atkinson, M.E. Orlowska, P. Valduriez, S.B. Zdonik, M.L. Brodie (Eds.)
-
Jagadish H.V., Koudas N., Muthukrishnan S. Mining deviants in a time series database. Proceedings of the 25th international conference on very large data bases 1999, 102-113. Morgan Kaufmann, Edinburgh, Scotland, UK. M.P. Atkinson, M.E. Orlowska, P. Valduriez, S.B. Zdonik, M.L. Brodie (Eds.).
-
(1999)
Proceedings of the 25th international conference on very large data bases
, pp. 102-113
-
-
Jagadish, H.V.1
Koudas, N.2
Muthukrishnan, S.3
-
10
-
-
33746921193
-
Finding unusual medical time-series subsequences: algorithms and applications
-
Keogh Eamonn J., Lin Jessica, Fu Ada Wai-Chee, Van Herle Helga Finding unusual medical time-series subsequences: algorithms and applications. IEEE Transactions on Information Technology in Biomedicine 2006, 10(3):429-439.
-
(2006)
IEEE Transactions on Information Technology in Biomedicine
, vol.10
, Issue.3
, pp. 429-439
-
-
Keogh, E.J.1
Lin, J.2
Fu, A.W.C.3
Van Herle, H.4
-
11
-
-
60349127820
-
Finding anomalous periodic time series
-
Rebbapragada U., Protopapas Pavlos, Brodley Carla E., Alcock Charles R. Finding anomalous periodic time series. Machine Learning 2009, 74(3):281-313.
-
(2009)
Machine Learning
, vol.74
, Issue.3
, pp. 281-313
-
-
Rebbapragada, U.1
Protopapas, P.2
Brodley, C.E.3
Alcock, C.R.4
-
12
-
-
0034824884
-
Concept decompositions for large sparse text data using clustering
-
Dhillon Inderjit S., Modha Dharmendra S. Concept decompositions for large sparse text data using clustering. Machine Learning 2001, 42(1/2):143-175.
-
(2001)
Machine Learning
, vol.42
, Issue.1-2
, pp. 143-175
-
-
Dhillon, I.S.1
Modha, D.S.2
-
15
-
-
33747886893
-
Automatic thresholding for defect detection
-
Ng H.F. Automatic thresholding for defect detection. Pattern Recognition Letters 2006, 27(14):1644-1649.
-
(2006)
Pattern Recognition Letters
, vol.27
, Issue.14
, pp. 1644-1649
-
-
Ng, H.F.1
-
16
-
-
84875236250
-
-
MIT-BIH arrhythmia database directory. [accessed June 2010].
-
MIT-BIH arrhythmia database directory. [accessed June 2010]. http://www.physionet.org/physiobank/database/html/mitdbdir/intro.htm.
-
-
-
-
17
-
-
84875277426
-
-
Data description toolbox (dd_tools). Available from: [accessed June 2010].
-
Tax David MJ. Data description toolbox (dd_tools). Available from: [accessed June 2010]. http://homepage.tudelft.nl/n9d04/dd_tools.html.
-
-
-
Tax David, M.J.1
|