메뉴 건너뛰기




Volumn 32, Issue 8, 2013, Pages 1394-1406

Joint modeling quality of life and survival using a terminal decline model in palliative care studies

Author keywords

End of life; Joint modeling; Palliative care; Quality of life; Survival; Terminal decline

Indexed keywords

ADVANCED CANCER; ARTICLE; CANCER PATIENT; CANCER SURVIVAL; DATA ANALYSIS; HEALTH STATISTICS; HUMAN; MATHEMATICAL COMPUTING; MATHEMATICAL MODEL; MAXIMUM LIKELIHOOD METHOD; MEASUREMENT ERROR; NORMAL DISTRIBUTION; OVERALL SURVIVAL; PALLIATIVE THERAPY; QUALITY ADJUSTED LIFE YEAR; QUALITY OF LIFE; RETROSPECTIVE STUDY; SIMULATION;

EID: 84875264498     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.5635     Document Type: Article
Times cited : (27)

References (32)
  • 1
    • 73549117927 scopus 로고    scopus 로고
    • National Consensus Project., 2nd edn). National Consensus Project for Quality Palliative Care: Brooklyn, N. Y.
    • National Consensus Project. Clinical Practice Guidelines for Quality Palliative Care, (2nd edn). National Consensus Project for Quality Palliative Care: Brooklyn, N. Y., 2009.
    • (2009) Clinical Practice Guidelines for Quality Palliative Care
  • 3
    • 79960140547 scopus 로고    scopus 로고
    • Standards for palliative care programs, interventions, and outcomes: not quite there yet
    • Bruera E, Hui D. Standards for palliative care programs, interventions, and outcomes: not quite there yet. Journal of Supportive Oncology 2011; 9(3):95-96.
    • (2011) Journal of Supportive Oncology , vol.9 , Issue.3 , pp. 95-96
    • Bruera, E.1    Hui, D.2
  • 6
    • 0031022645 scopus 로고    scopus 로고
    • Model-based approaches to analysing incomplete longitudinal and failure time data
    • Hogan JW, Laird NM. Model-based approaches to analysing incomplete longitudinal and failure time data. Statistics in Medicine 1997; 16(1-3):259-272.
    • (1997) Statistics in Medicine , vol.16 , Issue.1-3 , pp. 259-272
    • Hogan, J.W.1    Laird, N.M.2
  • 7
    • 8644246036 scopus 로고    scopus 로고
    • Joint modeling of longitudinal and time-to-event data: an overview
    • Tsiatis AA, Davidian M. Joint modeling of longitudinal and time-to-event data: an overview. Statistica Sinica 2004; 14:809-834.
    • (2004) Statistica Sinica , vol.14 , pp. 809-834
    • Tsiatis, A.A.1    Davidian, M.2
  • 8
    • 77951247088 scopus 로고    scopus 로고
    • Longitudinal data with follow-up truncated by death: match the analysis method to research aims
    • Kurland BF. Longitudinal data with follow-up truncated by death: match the analysis method to research aims. Statistical Science 2009; 24(2):211-222.
    • (2009) Statistical Science , vol.24 , Issue.2 , pp. 211-222
    • Kurland, B.F.1
  • 9
    • 0024438062 scopus 로고
    • Estimation and comparison of changes in the presence of informative right censoring: conditional linear model
    • Wu MC, Bailey KR. Estimation and comparison of changes in the presence of informative right censoring: conditional linear model. Biometrics 1989; 45(3):939-955.
    • (1989) Biometrics , vol.45 , Issue.3 , pp. 939-955
    • Wu, M.C.1    Bailey, K.R.2
  • 10
    • 0031032359 scopus 로고    scopus 로고
    • Mixture models for the joint distribution of repeated measures and event times
    • Hogan JW, Laird NM. Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine 1997; 16(3):239-257.
    • (1997) Statistics in Medicine , vol.16 , Issue.3 , pp. 239-257
    • Hogan, J.W.1    Laird, N.M.2
  • 11
    • 72649096048 scopus 로고    scopus 로고
    • Varying-coefficient models for longitudinal processes with continuous-time informative dropout
    • Su L, Hogan JW. Varying-coefficient models for longitudinal processes with continuous-time informative dropout. Biostatistics 2010; 11(1):93-110.
    • (2010) Biostatistics , vol.11 , Issue.1 , pp. 93-110
    • Su, L.1    Hogan, J.W.2
  • 12
    • 0001216089 scopus 로고    scopus 로고
    • Generalized linear mixture models for handling nonignorable dropouts in longitudinal studies
    • Fitzmaurice GM, Laird NM. Generalized linear mixture models for handling nonignorable dropouts in longitudinal studies. Biostatistics 2000; 1(2):141-156.
    • (2000) Biostatistics , vol.1 , Issue.2 , pp. 141-156
    • Fitzmaurice, G.M.1    Laird, N.M.2
  • 13
    • 0023921412 scopus 로고
    • Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process
    • Wu MC, Carroll RJ. Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics 1988; 44(1):175-188.
    • (1988) Biometrics , vol.44 , Issue.1 , pp. 175-188
    • Wu, M.C.1    Carroll, R.J.2
  • 15
    • 0030893266 scopus 로고    scopus 로고
    • A joint model for survival and longitudinal data measured with error
    • Wulfsohn MS, Tsiatis AA. A joint model for survival and longitudinal data measured with error. Biometrics 1997; 53(1):330-339.
    • (1997) Biometrics , vol.53 , Issue.1 , pp. 330-339
    • Wulfsohn, M.S.1    Tsiatis, A.A.2
  • 16
    • 0000710136 scopus 로고    scopus 로고
    • Joint modelling of longitudinal measurements and event time data
    • Henderson R, Diggle P, Dobson A. Joint modelling of longitudinal measurements and event time data. Biostatistics 2000; 1(4):465-480.
    • (2000) Biostatistics , vol.1 , Issue.4 , pp. 465-480
    • Henderson, R.1    Diggle, P.2    Dobson, A.3
  • 17
    • 34249899104 scopus 로고    scopus 로고
    • An approach to joint analysis of longitudinal measurements and competing risks failure time data
    • Elashoff RM, Li G, Li N. An approach to joint analysis of longitudinal measurements and competing risks failure time data. Statistics in Medicine 2007; 26(14):2813-2835.
    • (2007) Statistics in Medicine , vol.26 , Issue.14 , pp. 2813-2835
    • Elashoff, R.M.1    Li, G.2    Li, N.3
  • 18
    • 76749116117 scopus 로고    scopus 로고
    • Joint modeling of longitudinal ordinal data and competing risks survival times and analysis of the NINDS rt-PA stroke trial
    • Li N, Elashoff RM, Li G, Saver J. Joint modeling of longitudinal ordinal data and competing risks survival times and analysis of the NINDS rt-PA stroke trial. Statistics in Medicine 2010; 29(5):546-557.
    • (2010) Statistics in Medicine , vol.29 , Issue.5 , pp. 546-557
    • Li, N.1    Elashoff, R.M.2    Li, G.3    Saver, J.4
  • 19
    • 22144491220 scopus 로고    scopus 로고
    • Directly parameterized regression conditioning on being alive: analysis of longitudinal data truncated by deaths
    • Kurland BF, Heagerty PJ. Directly parameterized regression conditioning on being alive: analysis of longitudinal data truncated by deaths. Biostatistics 2005; 6(2):241-258.
    • (2005) Biostatistics , vol.6 , Issue.2 , pp. 241-258
    • Kurland, B.F.1    Heagerty, P.J.2
  • 24
    • 80054747535 scopus 로고    scopus 로고
    • Bayesian information criterion for longitudinal and clustered data
    • Jones RH. Bayesian information criterion for longitudinal and clustered data. Statistics in Medicine 2011; 30(25):3050-3056.
    • (2011) Statistics in Medicine , vol.30 , Issue.25 , pp. 3050-3056
    • Jones, R.H.1
  • 25
    • 85081456170 scopus 로고
    • A variable span smoother. Laboratory for Computational Statistics. Stanford University Technical Report No. 5
    • Friedman JH. A variable span smoother. Laboratory for Computational Statistics. Stanford University Technical Report No. 5, 1984.
    • (1984)
    • Friedman, J.H.1
  • 26
    • 0001164859 scopus 로고    scopus 로고
    • A consistent estimator for the distribution of quality adjusted survival time
    • Zhao H, Tsiatis AA. A consistent estimator for the distribution of quality adjusted survival time. Biometrika 1997; 84(2):339-348.
    • (1997) Biometrika , vol.84 , Issue.2 , pp. 339-348
    • Zhao, H.1    Tsiatis, A.A.2
  • 27
    • 11344284719 scopus 로고    scopus 로고
    • Regression methods for cost-effectiveness analysis with censored data
    • Willan AR, Lin DY, Manca A. Regression methods for cost-effectiveness analysis with censored data. Statistics in Medicine 2005; 24(1):131-145.
    • (2005) Statistics in Medicine , vol.24 , Issue.1 , pp. 131-145
    • Willan, A.R.1    Lin, D.Y.2    Manca, A.3
  • 29
    • 0021763923 scopus 로고
    • A statistical method for determining the breakpoint of two lines
    • Jones RH, Molitoris BA. A statistical method for determining the breakpoint of two lines. Analytical Biochemistry 1984; 141(1):287-290.
    • (1984) Analytical Biochemistry , vol.141 , Issue.1 , pp. 287-290
    • Jones, R.H.1    Molitoris, B.A.2
  • 30
    • 0347363890 scopus 로고    scopus 로고
    • Diagnostics for joint longitudinal and dropout time modeling
    • Dobson A, Henderson R. Diagnostics for joint longitudinal and dropout time modeling. Biometrics 2003; 59(4):741-751.
    • (2003) Biometrics , vol.59 , Issue.4 , pp. 741-751
    • Dobson, A.1    Henderson, R.2
  • 31
    • 77949750057 scopus 로고    scopus 로고
    • Multiple-imputation-based residuals and diagnostic plots for joint models of longitudinal and survival outcomes
    • Rizopoulos D, Verbeke G, Molenberghs G. Multiple-imputation-based residuals and diagnostic plots for joint models of longitudinal and survival outcomes. Biometrics 2010; 66(1):20-29.
    • (2010) Biometrics , vol.66 , Issue.1 , pp. 20-29
    • Rizopoulos, D.1    Verbeke, G.2    Molenberghs, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.