-
1
-
-
0003143423
-
Delay differential equation models for machine tool chatter
-
Wiley, New York, F.C. Moon (Ed.)
-
Stepan G. Delay differential equation models for machine tool chatter. Dynamics and chaos in manufacturing processes 1997, 165-191. Wiley, New York. F.C. Moon (Ed.).
-
(1997)
Dynamics and chaos in manufacturing processes
, pp. 165-191
-
-
Stepan, G.1
-
2
-
-
0002821614
-
-
Remote control of periodic robot motion. In: Proceedings of the thirteenth symposium on theory and practice of robots and manipulators, Zakopane, Poland
-
Insperger T, Stepan G. Remote control of periodic robot motion. In: Proceedings of the thirteenth symposium on theory and practice of robots and manipulators, Zakopane, Poland; 2000. p. 197-203.
-
(2000)
, pp. 197-203
-
-
Insperger, T.1
Stepan, G.2
-
3
-
-
0034223127
-
Stability of the human respiratory control system I. Analysis of a two-dimensional delay state-space model
-
Batzel J.J., Tran H.T. Stability of the human respiratory control system I. Analysis of a two-dimensional delay state-space model. J Math Biol 2000, 41:45-79.
-
(2000)
J Math Biol
, vol.41
, pp. 45-79
-
-
Batzel, J.J.1
Tran, H.T.2
-
4
-
-
0032193845
-
Modelling and analysis of time-lags in some basic patters of cell proliferation
-
Baker C.T., Bocharov G.A., Paul C.A., Rihan F.A. Modelling and analysis of time-lags in some basic patters of cell proliferation. J Math Biol 1998, 37:341-371.
-
(1998)
J Math Biol
, vol.37
, pp. 341-371
-
-
Baker, C.T.1
Bocharov, G.A.2
Paul, C.A.3
Rihan, F.A.4
-
5
-
-
79958057143
-
The Kaldor-Kalecki model of business cycle as a two-dimensional dynamical system
-
Szydlowski M., Krawiec A. The Kaldor-Kalecki model of business cycle as a two-dimensional dynamical system. J Nonlinear Math Phys 2001, 8:266-271.
-
(2001)
J Nonlinear Math Phys
, vol.8
, pp. 266-271
-
-
Szydlowski, M.1
Krawiec, A.2
-
6
-
-
0035493311
-
Subcritical Hopf bifurcation in the delay equation model for machine tool vibrations
-
Kalmar-Nagy T., Stépán G., Moon F.C. Subcritical Hopf bifurcation in the delay equation model for machine tool vibrations. Nonlinear Dyn 2001, 26:121-142.
-
(2001)
Nonlinear Dyn
, vol.26
, pp. 121-142
-
-
Kalmar-Nagy, T.1
Stépán, G.2
Moon, F.C.3
-
7
-
-
0039433298
-
Delay effects and differential delay equations in chemical kinetics
-
Epstein I.R. Delay effects and differential delay equations in chemical kinetics. Int Rev Phys Chem 1992, 11:135-160.
-
(1992)
Int Rev Phys Chem
, vol.11
, pp. 135-160
-
-
Epstein, I.R.1
-
8
-
-
1842694910
-
Approximate state-space manifolds which attract solutions of systems of delay-differential equations
-
Roussel M.R. Approximate state-space manifolds which attract solutions of systems of delay-differential equations. J Chem Phys 1998, 109:8154-8160.
-
(1998)
J Chem Phys
, vol.109
, pp. 8154-8160
-
-
Roussel, M.R.1
-
10
-
-
0035705695
-
Identifiability analysis of linear time-delay systems
-
In: Proceedings of the 40th IEEE conference on decision and control, Orlando, FL, USA
-
Orlov Y, Belkoura L, Richard JP, Dambrine M. Identifiability analysis of linear time-delay systems. In: Proceedings of the 40th IEEE conference on decision and control, Orlando, FL, USA; 2001. p. 4776-81.
-
(2001)
, pp. 4776-4781
-
-
Orlov, Y.1
Belkoura, L.2
Richard, J.P.3
Dambrine, M.4
-
11
-
-
0036686489
-
On identifiability of linear time-delay systems
-
Orlov Y., Belkoura L., Richard J.P., Dambrine M. On identifiability of linear time-delay systems. IEEE Trans Autom Control 2002, 47:1319-1324.
-
(2002)
IEEE Trans Autom Control
, vol.47
, pp. 1319-1324
-
-
Orlov, Y.1
Belkoura, L.2
Richard, J.P.3
Dambrine, M.4
-
12
-
-
33244454314
-
Parameter identifiability of nonlinear systems with time-delay
-
Zhang J., Xia X., Moog C.H. Parameter identifiability of nonlinear systems with time-delay. IEEE Trans Autom Control 2006, 51:371-375.
-
(2006)
IEEE Trans Autom Control
, vol.51
, pp. 371-375
-
-
Zhang, J.1
Xia, X.2
Moog, C.H.3
-
13
-
-
0030104851
-
On the identifiability of the time delay with least-squares methods
-
Ferretti G., Maffezzoni C., Scattolini R. On the identifiability of the time delay with least-squares methods. Automatica 1996, 32:449-453.
-
(1996)
Automatica
, vol.32
, pp. 449-453
-
-
Ferretti, G.1
Maffezzoni, C.2
Scattolini, R.3
-
14
-
-
0036990649
-
On-line parameter identification of linear time delay systems
-
In: Proceedings of the 41st IEEE conference on decision and control, Las Vegas, NV, USA
-
Orlov Y, Belkoura L, Richard JP, Dambrine M. On-line parameter identification of linear time delay systems. In: Proceedings of the 41st IEEE conference on decision and control, Las Vegas, NV, USA; 2002. p. 630-5.
-
(2002)
, pp. 630-635
-
-
Orlov, Y.1
Belkoura, L.2
Richard, J.P.3
Dambrine, M.4
-
15
-
-
33845525578
-
An empirical approach for delayed oscillator stability and parametric identification
-
Mann B.P., Young K.A. An empirical approach for delayed oscillator stability and parametric identification. Proc R Soc A 2006, 462:2145-2160.
-
(2006)
Proc R Soc A
, vol.462
, pp. 2145-2160
-
-
Mann, B.P.1
Young, K.A.2
-
16
-
-
84868196842
-
Parameter identification in periodic delay differential equations with distributed delay
-
Torkamani S., Butcher E., Khasawneh F. Parameter identification in periodic delay differential equations with distributed delay. Commun Nonlinear Sci Numer Simulat 2012, 18:1016-1026.
-
(2012)
Commun Nonlinear Sci Numer Simulat
, vol.18
, pp. 1016-1026
-
-
Torkamani, S.1
Butcher, E.2
Khasawneh, F.3
-
17
-
-
65349191196
-
Parameter estimation for time-delay chaotic systems by particle swarm optimization
-
Tang Y., Guan X. Parameter estimation for time-delay chaotic systems by particle swarm optimization. Chaos, Solitons Fractals 2009, 40:1391-1398.
-
(2009)
Chaos, Solitons Fractals
, vol.40
, pp. 1391-1398
-
-
Tang, Y.1
Guan, X.2
-
18
-
-
77953512020
-
Parameters identification and synchronization of chaotic delayed systems containing uncertainties and time-varying delay
-
Sun Z., Yang X. Parameters identification and synchronization of chaotic delayed systems containing uncertainties and time-varying delay. Math Prob Eng 2010, 105309.
-
(2010)
Math Prob Eng
, pp. 105309
-
-
Sun, Z.1
Yang, X.2
-
19
-
-
79953284193
-
Parametric estimation for delayed nonlinear time-varying dynamical systems
-
Deshmukh V. Parametric estimation for delayed nonlinear time-varying dynamical systems. J Comput Nonlinear Dyn 2011, 6:041003-5.
-
(2011)
J Comput Nonlinear Dyn
, vol.6
, pp. 041003-041005
-
-
Deshmukh, V.1
-
22
-
-
33748758802
-
-
A.K. Peters Ltd, Wellesly, MA
-
Batkai A., Piazerra S. Semigroups for delay equations, research notes in mathematics 2005, vol. 10. A.K. Peters Ltd, Wellesly, MA.
-
(2005)
Semigroups for delay equations, research notes in mathematics
, vol.10
-
-
Batkai, A.1
Piazerra, S.2
-
25
-
-
77957355390
-
On the Chebyshev spectral continuous time approximation for constant and periodic delay differential equations
-
Butcher E.A., Bobrenkov O.A. On the Chebyshev spectral continuous time approximation for constant and periodic delay differential equations. Commun Nonlinear Sci Numer Simulat 2011, 16:1541-1554.
-
(2011)
Commun Nonlinear Sci Numer Simulat
, vol.16
, pp. 1541-1554
-
-
Butcher, E.A.1
Bobrenkov, O.A.2
-
28
-
-
85196210011
-
-
Hyperchaotic and delayed oscillators for system identification with application to damage assessment. PhD dissertation, New Mexico State University
-
Torkamani S. Hyperchaotic and delayed oscillators for system identification with application to damage assessment. PhD dissertation, New Mexico State University, 2013.
-
(2013)
-
-
Torkamani, S.1
-
29
-
-
0003492060
-
Theory of functional differential equations
-
Springer-Verlag, New York
-
Hale J. Theory of functional differential equations. Applied mathematical sciences 1977, vol. 3. Springer-Verlag, New York.
-
(1977)
Applied mathematical sciences
, vol.3
-
-
Hale, J.1
-
30
-
-
22344437802
-
Stability of elastic columns with periodic retarded follower forces
-
Ma H., Butcher E.A. Stability of elastic columns with periodic retarded follower forces. J Sound Vib 2005, 286:849-867.
-
(2005)
J Sound Vib
, vol.286
, pp. 849-867
-
-
Ma, H.1
Butcher, E.A.2
|