메뉴 건너뛰기




Volumn 11, Issue 1, 2012, Pages 167-178

Parameter estimation with mixture item response theory models: A Monte Carlo comparison of maximum likelihood and Bayesian methods

Author keywords

Bayesian estimation; Differential item functioning; Markov chain Monte Carlo estimation; Maximum likelihood estimation; Mixture item response theory

Indexed keywords


EID: 84875234871     PISSN: 15389472     EISSN: None     Source Type: Journal    
DOI: 10.22237/jmasm/1335845580     Document Type: Article
Times cited : (29)

References (26)
  • 2
    • 0036905692 scopus 로고    scopus 로고
    • Item parameter estimation under conditions of test speededness: Application of a mixture Rasch model with ordinal constraints
    • Bolt, D. M., Cohen, A. S., & Wollack, J. A. (2002). Item parameter estimation under conditions of test speededness: Application of a mixture Rasch model with ordinal constraints. Journal of Educational Measurement, 39, 331-348.
    • (2002) Journal of Educational Measurement , vol.39 , pp. 331-348
    • Bolt, D.M.1    Cohen, A.S.2    Wollack, J.A.3
  • 6
    • 21644481766 scopus 로고    scopus 로고
    • A mixture model analysis of differential item functioning
    • Cohen, A. S., & Bolt, D. M. (2005). A mixture model analysis of differential item functioning. Journal of Educational Measurement, 42(2), 133-148.
    • (2005) Journal of Educational Measurement , vol.42 , Issue.2 , pp. 133-148
    • Cohen, A.S.1    Bolt, D.M.2
  • 7
    • 77956308232 scopus 로고    scopus 로고
    • Paper presented at the annual meeting of the American Educational Research Association, Montreal, Canada
    • Cohen, A. S., Cho, S.J., & Kim, S.H. (2005). A mixture testlet model for educational tests. Paper presented at the annual meeting of the American Educational Research Association, Montreal, Canada.
    • (2005) A mixture testlet model for educational tests
    • Cohen, A.S.1    Cho, S.J.2    Kim, S.H.3
  • 14
    • 78650440839 scopus 로고    scopus 로고
    • Improvement in detection of differential item functioning using a mixture item response theory model
    • Maij-de Meij, A. M., Kelderman, H., & van der Flier, H. (2010). Improvement in detection of differential item functioning using a mixture item response theory model. Multivariate Behavioral Research, 45(6), 975-999.
    • (2010) Multivariate Behavioral Research , vol.45 , Issue.6 , pp. 975-999
    • Maij-de Meij, A.M.1    Kelderman, H.2    van der Flier, H.3
  • 15
    • 0001019640 scopus 로고
    • Modeling item responses when different subjects employ different solution strategies
    • Mislevy, R. J., & Verhelst, N. D. (1990). Modeling item responses when different subjects employ different solution strategies. Psychometrika, 55(2), 195-215.
    • (1990) Psychometrika , vol.55 , Issue.2 , pp. 195-215
    • Mislevy, R.J.1    Verhelst, N.D.2
  • 16
    • 84875233393 scopus 로고    scopus 로고
    • MPlus software, version 6.1. Los Angeles, CA: MPlus
    • Muthén, L. K. & Muthén, B. O. (2011). MPlus software, version 6.1. Los Angeles, CA: MPlus.
    • (2011)
    • Muthén, L.K.1    Muthén, B.O.2
  • 17
    • 0002657726 scopus 로고    scopus 로고
    • Logistic mixture models
    • W. J. van der Linden & R. K. Hambleton (Eds.)New York, NY: Springer
    • Rost, J. (1997). Logistic mixture models. In Handbook of modern item response theory, W. J. van der Linden & R. K. Hambleton (Eds.), 449-463. New York, NY: Springer.
    • (1997) Handbook of modern item response theory , pp. 449-463
    • Rost, J.1
  • 18
    • 85004778111 scopus 로고
    • A logistic mixture distribution model for polychotomous item responses
    • Rost, J. (1991). A logistic mixture distribution model for polychotomous item responses. British Journal of Mathematical and Statistical Psychology, 44, 75-92.
    • (1991) British Journal of Mathematical and Statistical Psychology , vol.44 , pp. 75-92
    • Rost, J.1
  • 19
    • 84970751365 scopus 로고
    • Rasch models in latent classes: An integration of two approaches to item analysis
    • Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item analysis. Applied Psychological Measurement, 14, 271-282.
    • (1990) Applied Psychological Measurement , vol.14 , pp. 271-282
    • Rost, J.1
  • 20
    • 70349750748 scopus 로고    scopus 로고
    • Examining differential item functioning from a latent class perspective
    • G. R. Hancock & K. M. Samuelson (Eds.)Charlotte, NC: Information Age Publishing
    • Samuleson, K. M. (2008). Examining differential item functioning from a latent class perspective. In Advances in latent variable mixture models, G. R. Hancock & K. M. Samuelson (Eds.), 67-113. Charlotte, NC: Information Age Publishing.
    • (2008) Advances in latent variable mixture models , pp. 67-113
    • Samuleson, K.M.1
  • 23
    • 67649382519 scopus 로고    scopus 로고
    • Mixture distribution item response models
    • C. R. Rao & S. Sinharay (Eds.)Amsterdam: Elsevier
    • von Davier, M., & Rost, J. (2007). Mixture distribution item response models. In Handbook of statistics, 26: Psychometrics, C. R. Rao & S. Sinharay (Eds.), 643-661. Amsterdam: Elsevier.
    • (2007) Handbook of statistics, 26: Psychometrics , pp. 643-661
    • von Davier, M.1    Rost, J.2
  • 24
    • 8644271810 scopus 로고    scopus 로고
    • Partially observed mixture models of IRT models: An extension of the generalized partial credit model
    • von Davier, M., & Yamamoto, K. (2004). Partially observed mixture models of IRT models: An extension of the generalized partial credit model. Applied Psychological Measurement, 28, 389-406.
    • (2004) Applied Psychological Measurement , vol.28 , pp. 389-406
    • von Davier, M.1    Yamamoto, K.2
  • 25
    • 79951711573 scopus 로고    scopus 로고
    • Mixture Rasch models with Joint Maximum Likelihood Estimation
    • Willse, J. T. (2011). Mixture Rasch models with Joint Maximum Likelihood Estimation. Educational and Psychological Measurement, 17(1), 5-19.
    • (2011) Educational and Psychological Measurement , vol.17 , Issue.1 , pp. 5-19
    • Willse, J.T.1
  • 26


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.