-
1
-
-
73349137436
-
Gradient Flows in Metric Spaces and in the Space of Probability Measures
-
Basel, Birkhäuser Verlag
-
Ambrosio, L., Gigli, N., and Savaré, G. (2008). Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics. Basel: Birkhäuser Verlag.
-
(2008)
Lectures in Mathematics
-
-
Ambrosio, L.1
Gigli, N.2
Savaré, G.3
-
2
-
-
53649085750
-
A gradient flow approach to an evolution problem arising in superconductivity
-
Ambrosio, L., Serfaty, S. (2008). A gradient flow approach to an evolution problem arising in superconductivity. Comm. Pure Appl. Math. 61: 1495-1539.
-
(2008)
Comm. Pure Appl. Math.
, vol.61
, pp. 1495-1539
-
-
Ambrosio, L.1
Serfaty, S.2
-
3
-
-
79957801928
-
Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion
-
Bedrossian, J., Rodríguez, N., Bertozzi, A.L. (2011). Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion. Nonlinearity 24: 1683-1714.
-
(2011)
Nonlinearity
, vol.24
, pp. 1683-1714
-
-
Bedrossian, J.1
Bertozzi, A.L.2
-
4
-
-
79958768785
-
Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis
-
Biler, P., Corrias, L., Dolbeault, J. (2011). Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis. J. Math. Biol. 63: 1-32.
-
(2011)
J. Math. Biol.
, vol.63
, pp. 1-32
-
-
Biler, P.1
Corrias, L.2
Dolbeault, J.3
-
5
-
-
84875176652
-
On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher
-
Partielles
-
Blanchet, A. On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher. To appear in Sémin. Équ. Dériv. Partielles.
-
To appear in Sémin. Équ. Dériv
-
-
Blanchet, A.1
-
6
-
-
55549135711
-
Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model
-
Blanchet, A., Calvez, V., Carrillo, J.A. (2008). Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model. SIAM J. Numer. Anal. 46: 691-721.
-
(2008)
SIAM J. Numer. Anal.
, vol.46
, pp. 691-721
-
-
Blanchet, A.1
Calvez, V.2
Carrillo, J.A.3
-
7
-
-
84855936220
-
Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model
-
Blanchet, A., Carlen, E., Carrillo, J.A. (2012). Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model. J. Funct. Anal. 262: 2142-2230.
-
(2012)
J. Funct. Anal.
, vol.262
, pp. 2142-2230
-
-
Blanchet, A.1
Carlen, E.2
Carrillo, J.A.3
-
8
-
-
60449088258
-
Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions
-
Blanchet, A., Carrillo, J.A., Laurençot, P. (2009). Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions. Calc. Var. Part. Diff. Eqs. 35: 133-168.
-
(2009)
Calc. Var. Part. Diff. Eqs.
, vol.35
, pp. 133-168
-
-
Blanchet, A.1
Carrillo, J.A.2
-
10
-
-
2142661459
-
Solution of a model Boltzmann equation via steepest descent in the 2-Wasserstein metric
-
Carlen, E.A., Gangbo, W. (2004). Solution of a model Boltzmann equation via steepest descent in the 2-Wasserstein metric. Arch. Ration. Mech. Anal. 172: 21-64.
-
(2004)
Arch. Ration. Mech. Anal.
, vol.172
, pp. 21-64
-
-
Carlen, E.A.1
Gangbo, W.2
-
11
-
-
84875138845
-
2 mixed gradient flow approach to the fully parabolic Keller-Segel model
-
2 mixed gradient flow approach to the fully parabolic Keller-Segel model. In preparation.
-
In preparation
-
-
Carrillo, J.A.1
Lisini, S.2
-
12
-
-
0242411895
-
Generalized thermodynamics and Fokker-Planck equations: applications to stellar dynamics and two-dimensional turbulence
-
Chavanis, P.-H. (2003). Generalized thermodynamics and Fokker-Planck equations: applications to stellar dynamics and two-dimensional turbulence. Phys. Rev. E 68: 036108.
-
(2003)
Phys. Rev. E
, vol.68
, pp. 036108
-
-
Chavanis, P.-H.1
-
13
-
-
0001089576
-
On the Cauchy problem for Boltzmann equations: global existence and weak stability
-
DiPerna, R.J., Lions, P.-L. (1989). On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. of Math. 130: 321-366.
-
(1989)
Ann. of Math.
, vol.130
, pp. 321-366
-
-
DiPerna, R.J.1
Lions, P.-L.2
-
14
-
-
4744373150
-
From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I
-
Horstmann, D. (2003). From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch. Math.-Verein. 105: 103-165.
-
(2003)
Jahresber. Deutsch. Math.-Verein.
, vol.105
, pp. 103-165
-
-
Horstmann, D.1
-
15
-
-
13844288282
-
From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. II
-
Horstmann, D. (2004). From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. II. Jahresber. Deutsch. Math.-Verein. 106: 51-69.
-
(2004)
Jahresber. Deutsch. Math.-Verein.
, vol.106
, pp. 51-69
-
-
Horstmann, D.1
-
16
-
-
80655127877
-
Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type
-
Ishida, S., Yokota, T. (2012). Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. J. Diff. Eqs. 252: 1421-1440.
-
(2012)
J. Diff. Eqs.
, vol.252
, pp. 1421-1440
-
-
Ishida, S.1
Yokota, T.2
-
17
-
-
83055194471
-
Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data
-
Ishida, S., Yokota, T. (2012). Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data. J. Diff. Eqs. 252: 2469-2491.
-
(2012)
J. Diff. Eqs.
, vol.252
, pp. 2469-2491
-
-
Ishida, S.1
Yokota, T.2
-
18
-
-
0032343437
-
The variational formulation of the Fokker-Planck equation
-
Jordan, R., Kinderlehrer, D., Otto, F. (1998). The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal.29:1-17.
-
(1998)
SIAM J. Math. Anal.
, vol.29
, pp. 1-17
-
-
Jordan, R.1
Kinderlehrer, D.2
Otto, F.3
-
19
-
-
0014748565
-
Initiation of slime mold aggregation viewed as an instability
-
Keller, E.F., Segel, L.A. (1970). Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26: 399-415.
-
(1970)
J. Theor. Biol.
, vol.26
, pp. 399-415
-
-
Keller, E.F.1
Segel, L.A.2
-
21
-
-
0242648945
-
Analysis
-
Providence, RI, American Mathematical Society
-
Lieb, E.H., Loss, M. (2001). Analysis. Graduate Studies in Mathematics. Vol. 14, Providence, RI: American Mathematical Society.
-
(2001)
Graduate Studies in Mathematics
, vol.14
-
-
Lieb, E.H.1
Loss, M.2
-
22
-
-
74949092030
-
A family of nonlinear fourth order equations of gradient flow type
-
Matthes, D., McCann, R.J., Savaré, G. (2009). A family of nonlinear fourth order equations of gradient flow type. Comm. Part. Diff. Eqs. 34: 1352-1397.
-
(2009)
Comm. Part. Diff. Eqs.
, vol.34
, pp. 1352-1397
-
-
Matthes, D.1
McCann, R.J.2
Savaré, G.3
-
23
-
-
0001560970
-
The geometry of dissipative evolution equations: the porous medium equation
-
Otto, F. (2001). The geometry of dissipative evolution equations: the porous medium equation. Comm. Part. Diff. Eqs. 26: 101-174.
-
(2001)
Comm. Part. Diff. Eqs.
, vol.26
, pp. 101-174
-
-
Otto, F.1
-
27
-
-
0003799686
-
Singular Integrals and Differentiability Properties of Functions
-
Princeton, NJ, Princeton University Press
-
Stein, E.M. (1970). Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton, NJ: Princeton University Press.
-
(1970)
Princeton Mathematical Series, No. 30
-
-
Stein, E.M.1
-
28
-
-
43049127610
-
Application of the best constant of the Sobolev inequality to degenerate Keller-Segel models
-
Sugiyama, Y. (2007). Application of the best constant of the Sobolev inequality to degenerate Keller-Segel models. Adv. Diff. Eqs. 12: 121-144.
-
(2007)
Adv. Diff. Eqs.
, vol.12
, pp. 121-144
-
-
Sugiyama, Y.1
-
29
-
-
34547463400
-
Time global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems of chemotaxis
-
Sugiyama, Y. (2007). Time global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems of chemotaxis. Diff. Int. Eqs. 20: 133-180.
-
(2007)
Diff. Int. Eqs.
, vol.20
, pp. 133-180
-
-
Sugiyama, Y.1
-
30
-
-
33646542023
-
Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term
-
Sugiyama, Y., Kunii, H. (2006). Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term. J. Diff. Eqs. 227: 333-364.
-
(2006)
J. Diff. Eqs.
, vol.227
, pp. 333-364
-
-
Sugiyama, Y.1
Kunii, H.2
-
31
-
-
81955160916
-
Uniqueness and continuity of solution for the initial data in the scaling invariant class of the degenerate Keller-Segel system
-
Sugiyama, Y., Yahagi, Y. (2011). Uniqueness and continuity of solution for the initial data in the scaling invariant class of the degenerate Keller-Segel system. J. Evol. Equ. 11: 319-337.
-
(2011)
J. Evol. Equ.
, vol.11
, pp. 319-337
-
-
Sugiyama, Y.1
Yahagi, Y.2
-
32
-
-
77955354536
-
Degenerate parabolic equation with critical exponent derived from the kinetic theory. I. Generation of the weak solution
-
Suzuki, T., Takahashi, R. (2009). Degenerate parabolic equation with critical exponent derived from the kinetic theory. I. Generation of the weak solution. Adv. Diff. Eqs. 14: 433-476.
-
(2009)
Adv. Diff. Eqs.
, vol.14
, pp. 433-476
-
-
Suzuki, T.1
Takahashi, R.2
-
33
-
-
84875183394
-
Degenerate parabolic equation with critical exponent derived from the kinetic theory. II. Blowup threshold
-
Suzuki, T., Takahashi, R. (2009). Degenerate parabolic equation with critical exponent derived from the kinetic theory. II. Blowup threshold. Diff. Int. Eqs. 22: 1153-1172.
-
(2009)
Diff. Int. Eqs.
, vol.22
, pp. 1153-1172
-
-
Suzuki, T.1
Takahashi, R.2
|