|
Volumn 768, Issue 1, 2013, Pages 49-56
|
Use of the bootstrap and permutation methods for a more robust variable importance in the projection metric for partial least squares regression
|
Author keywords
Bootstrapping; Partial least squares; Permutation; Variable importance
|
Indexed keywords
MANUFACTURE;
PROCESSING;
BOOTSTRAPPING;
MANUFACTURING PROCESS CHANGES;
PARTIAL LEAST SQUARE (PLS);
PARTIAL LEAST SQUARES REGRESSION;
PERMUTATION;
SELECTION OF VARIABLES;
VARIABLE IMPORTANCES;
VARIABLE SELECTION METHODS;
LEAST SQUARES APPROXIMATIONS;
ALGORITHM;
ARTICLE;
BOOTSTRAPPING;
DATA ANALYSIS;
GOOD MANUFACTURING PRACTICE;
PARTIAL LEAST SQUARES REGRESSION;
PREDICTOR VARIABLE;
PRIORITY JOURNAL;
ROOT CAUSE ANALYSIS;
STATISTICAL ANALYSIS;
STATISTICAL MODEL;
|
EID: 84875087248
PISSN: 00032670
EISSN: 18734324
Source Type: Journal
DOI: 10.1016/j.aca.2013.01.004 Document Type: Article |
Times cited : (83)
|
References (15)
|