메뉴 건너뛰기




Volumn 22, Issue 5, 2013, Pages 987-998

Adaptive neuro-fuzzy inference system-based model for elevation-surface area-storage interrelationships

Author keywords

ANFIS; Radial basis network; Regression model; Reservoir operation; Sg. Langat dam

Indexed keywords

BACKPROPAGATION; FUZZY NEURAL NETWORKS; FUZZY SYSTEMS; RADIAL BASIS FUNCTION NETWORKS; REGRESSION ANALYSIS; RESERVOIRS (WATER); WATER RESOURCES;

EID: 84875079997     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-011-0790-4     Document Type: Article
Times cited : (15)

References (32)
  • 1
    • 79952294471 scopus 로고    scopus 로고
    • An integrated neural network stochastic dynamic programming model for optimizing the operation policy of Aswan High Dam
    • doi:10.2166/nh.2010.043
    • EL-Shafie AH, El-Manadely MS (2011) An integrated neural network stochastic dynamic programming model for optimizing the operation policy of Aswan High Dam. Hydrol Res 42: 50-67. doi: 10. 2166/nh. 2010. 043.
    • (2011) Hydrol Res , vol.42 , pp. 50-67
    • EL-Shafie, A.H.1    El-Manadely, M.S.2
  • 2
    • 33750412415 scopus 로고    scopus 로고
    • Single reservoir operating policies using genetic algorithm
    • Jothiprakash V, Shanthi G (2006) Single reservoir operating policies using geneticalgorithm. Water Resour Manag 20: 917-929.
    • (2006) Water Resour Manag , vol.20 , pp. 917-929
    • Jothiprakash, V.1    Shanthi, G.2
  • 3
    • 0037342412 scopus 로고    scopus 로고
    • Optimization of reservoir management and operation with hedging rules
    • Tu M, Hsu N, Yeh WW (2003) Optimization of reservoir management and operation with hedging rules. J Water Res Plan Manag 129: 86-97.
    • (2003) J Water Res Plan Manag , vol.129 , pp. 86-97
    • Tu, M.1    Hsu, N.2    Yeh, W.W.3
  • 4
    • 0035425838 scopus 로고    scopus 로고
    • Reservoir optimization using sampling SDP with ensemble stream flow prediction (ESP) forecast
    • Faber BA, Stedinger JR (2001) Reservoir optimization using sampling SDP with ensemble stream flow prediction (ESP) forecast. J Hydrol 249: 113-133.
    • (2001) J Hydrol , vol.249 , pp. 113-133
    • Faber, B.A.1    Stedinger, J.R.2
  • 6
    • 33947164707 scopus 로고    scopus 로고
    • Simulation and optimization modeling approach for operation of the HoaBinh reservoir, Vietnam
    • Ngo LL, Madsen H, Rosbjerg D (2007) Simulation and optimization modeling approach for operation of the HoaBinh reservoir, Vietnam. J Hydrol 336: 269-281.
    • (2007) J Hydrol , vol.336 , pp. 269-281
    • Ngo, L.L.1    Madsen, H.2    Rosbjerg, D.3
  • 7
    • 0026807425 scopus 로고
    • Rationalizing water requirements with aid of fuzzy allocation model
    • Kindler J (1992) Rationalizing water requirements with aid of fuzzy allocation model. J Water Resour Plan Manag 118: 308-323.
    • (1992) J Water Resour Plan Manag , vol.118 , pp. 308-323
    • Kindler, J.1
  • 8
    • 33746832391 scopus 로고    scopus 로고
    • Adaptive neural-based fuzzy inference system (ANFIS) approach for modeling hydrological time series
    • Keskin ME et al (2006) Adaptive neural-based fuzzy inference system (ANFIS) approach for modeling hydrological time series. J Hydrol Sci 5: 588-598.
    • (2006) J Hydrol Sci , vol.5 , pp. 588-598
    • Keskin, M.E.1
  • 9
    • 33947693294 scopus 로고    scopus 로고
    • A neuro-fuzzy model for inflow forecasting of the Nile River at Aswan high dam
    • doi:10.1007/s11269-006-9027-1
    • El-Shafie A, Taha MR, Noureldin A (2007) A neuro-fuzzy model for inflow forecasting of the Nile River at Aswan high dam. Water Resour Manage 21: 533-556. doi: 10. 1007/s11269-006-9027-1.
    • (2007) Water Resour Manage , vol.21 , pp. 533-556
    • El-Shafie, A.1    Taha, M.R.2    Noureldin, A.3
  • 10
    • 0033692068 scopus 로고    scopus 로고
    • River stage forecasting in Bangladesh: neural network approach
    • Liong SY et al (2000) River stage forecasting in Bangladesh: neural network approach'. J Comput Civil Eng 14: 1-8.
    • (2000) J Comput Civil Eng , vol.14 , pp. 1-8
    • Liong, S.Y.1
  • 11
    • 84952642779 scopus 로고    scopus 로고
    • Application of artificial neural networks for flood forecasting
    • Lekkas DF et al (2000) Application of artificial neural networks for flood forecasting. Glob Nest Int J 6: 205-211.
    • (2000) Glob Nest Int J , vol.6 , pp. 205-211
    • Lekkas, D.F.1
  • 12
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall Runoff process
    • Hsu KL, Gupta HV, Sorooshian S (1995) Artificial neural network modeling of the rainfall Runoff process. Water Resour Res 31: 2517-2530.
    • (1995) Water Resour Res , vol.31 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, H.V.2    Sorooshian, S.3
  • 13
    • 0028534337 scopus 로고
    • Conjunctive operation of hydroelectric and thermal power plants
    • doi:10.1061/(ASCE)0733-9496(1994)120:6(778)
    • Harboe R, Gautam TR, Onta PR (1994) Conjunctive operation of hydroelectric and thermal power plants. J Water Resour Plan Manage 120: 778-793. doi: 10. 1061/(ASCE)0733-9496(1994)120: 6(778).
    • (1994) J Water Resour Plan Manage , vol.120 , pp. 778-793
    • Harboe, R.1    Gautam, T.R.2    Onta, P.R.3
  • 16
    • 51249194645 scopus 로고
    • A logic calculus of the ideas immanent in nervous activity
    • McCulloch WS, Pitts W (1943) A logic calculus of the ideas immanent in nervous activity. Bull Math Biophys 5: 115-133.
    • (1943) Bull Math Biophys , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 17
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • D. E. Rumelhart and J. L. McClelland (Eds.), Cambridge: MIT Press
    • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL (eds) Parallel distributed processing. MIT Press, Cambridge.
    • (1986) Parallel Distributed Processing
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 18
    • 0028416331 scopus 로고
    • Neural networks in civil engineering. I: principles and understanding
    • Flood I, Kartam N (1994) Neural networks in civil engineering. I: principles and understanding. J Comput Civil Eng 8: 131-148.
    • (1994) J Comput Civil Eng , vol.8 , pp. 131-148
    • Flood, I.1    Kartam, N.2
  • 19
    • 0000696616 scopus 로고
    • Neural networks and related methods of classification
    • Ripley BD (1994) Neural networks and related methods of classification. J Roy Stat Soc 56: 409-456.
    • (1994) J Roy Stat Soc , vol.56 , pp. 409-456
    • Ripley, B.D.1
  • 21
    • 0035108726 scopus 로고    scopus 로고
    • Neural network based modeling of environmental variables: a systematic approach
    • Maier HR, Dandy GC (2001) Neural network based modeling of environmental variables: a systematic approach. Math Comput Model 33: 669-682.
    • (2001) Math Comput Model , vol.33 , pp. 669-682
    • Maier, H.R.1    Dandy, G.C.2
  • 22
    • 0029767278 scopus 로고    scopus 로고
    • On lateral connections in feedforward neural networks
    • Institute of Electrical and Electronics Engineers, New York
    • Kothari R, Agyepong K (1996) On lateral connections in feedforward neural networks. In: Proceedings of IEEE International conference on neural networks, Institute of Electrical and Electronics Engineers, New York, pp 13-18.
    • (1996) Proceedings of IEEE International conference on neural networks , pp. 13-18
    • Kothari, R.1    Agyepong, K.2
  • 23
    • 0027599793 scopus 로고
    • Universal approximation bounds for superposition of a sigmoid al function
    • Barron AR (1993) Universal approximation bounds for superposition of a sigmoid al function. IEEE Trans Inf Theory 39: 930-945.
    • (1993) IEEE Trans Inf Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 24
    • 0000255165 scopus 로고    scopus 로고
    • Controlling hidden layer capacity through lateral connections
    • Agyepong K, Kothari R (1997) Controlling hidden layer capacity through lateral connections. Neural Comput 9: 1381-1402.
    • (1997) Neural Comput , vol.9 , pp. 1381-1402
    • Agyepong, K.1    Kothari, R.2
  • 25
    • 0002127281 scopus 로고
    • What sized net gives valid generalization?
    • Baum E, Haussler D (1989) What sized net gives valid generalization? Neural Inf Process Syst 1: 81-90.
    • (1989) Neural Inf Process Syst , vol.1 , pp. 81-90
    • Baum, E.1    Haussler, D.2
  • 27
    • 69249208624 scopus 로고    scopus 로고
    • Enhancing inflow forecasting model at Aswan high dam utilizing radial basis neural network and upstream monitoring stations measurements
    • doi:10.1007/s11269-008-9382-1
    • El-Shafie A, Abdin AE, Noureldin A, Taha MR (2009) Enhancing inflow forecasting model at Aswan high dam utilizing radial basis neural network and upstream monitoring stations measurements. Water Resour Manage 23: 2289-2315. doi: 10. 1007/s11269-008-9382-1.
    • (2009) Water Resour Manage , vol.23 , pp. 2289-2315
    • El-Shafie, A.1    Abdin, A.E.2    Noureldin, A.3    Taha, M.R.4
  • 28
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen SC, Cowan FN, Grant PM (1991) Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans Neural Netw 2: 302-309.
    • (1991) IEEE Trans Neural Netw , vol.2 , pp. 302-309
    • Chen, S.C.1    Cowan, F.N.2    Grant, P.M.3
  • 29
    • 84947626826 scopus 로고
    • Recursive hybrid algorithm for non-linear system identification using radial basis function networks
    • Chen SS, Billings A, Grant PM (1990) Recursive hybrid algorithm for non-linear system identification using radial basis function networks. Int J Control 55: 1051-1070.
    • (1990) Int J Control , vol.55 , pp. 1051-1070
    • Chen, S.S.1    Billings, A.2    Grant, P.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.