메뉴 건너뛰기




Volumn 92, Issue 4, 2013, Pages 1138-1142

A comparison of neural network models, fuzzy logic, and multiple linear regression for prediction of hatchability

Author keywords

Artificial neural network; Fuzzy logic; Hatchability; Multiple linear regression

Indexed keywords

ANIMAL; ANIMAL HUSBANDRY; ARTICLE; ARTIFICIAL NEURAL NETWORK; BIOLOGICAL MODEL; CHICK EMBRYO; CHICKEN; COMPARATIVE STUDY; FUZZY LOGIC; GROWTH, DEVELOPMENT AND AGING; METHODOLOGY; OOCYTE; PHYSIOLOGY; REPRODUCTION; STATISTICAL MODEL;

EID: 84875030685     PISSN: 00325791     EISSN: 15253171     Source Type: Journal    
DOI: 10.3382/ps.2012-02827     Document Type: Article
Times cited : (22)

References (18)
  • 1
    • 53949083291 scopus 로고    scopus 로고
    • Neural network model for egg production curve
    • Ahmadi, H., and A. Golian. 2008. Neural network model for egg production curve. J. Anim. Vet. Adv. 7:1168-1170.
    • (2008) J. Anim. Vet. Adv. , vol.7 , pp. 1168-1170
    • Ahmadi, H.1    Golian, A.2
  • 2
    • 72249119500 scopus 로고    scopus 로고
    • Growth analysis of chickens fed diets varying in the percentage of metabolizable energy provided by protein, fat, and carbohydrate through artificial neural network
    • Ahmadi, H., and A. Golian. 2010. Growth analysis of chickens fed diets varying in the percentage of metabolizable energy provided by protein, fat, and carbohydrate through artificial neural network. Poult. Sci. 89:173-179.
    • (2010) Poult. Sci. , vol.89 , pp. 173-179
    • Ahmadi, H.1    Golian, A.2
  • 3
    • 80051739965 scopus 로고    scopus 로고
    • Response surface and neural network models for performance of broiler chicks fed diets varying in digestible protein and critical amino acids from 11 to 17 days of age
    • Ahmadi, H., and A. Golian. 2011. Response surface and neural network models for performance of broiler chicks fed diets varying in digestible protein and critical amino acids from 11 to 17 days of age. Poult. Sci. 90:2085-2096.
    • (2011) Poult. Sci. , vol.90 , pp. 2085-2096
    • Ahmadi, H.1    Golian, A.2
  • 4
    • 46949087369 scopus 로고    scopus 로고
    • Modeling and optimization I: Usability of response surface methodology
    • Baş, D., and I. H. Boyaci. 2007a. Modeling and optimization I: Usability of response surface methodology. J. Food Eng. 78:836-845.
    • (2007) J. Food Eng. , vol.78 , pp. 836-845
    • Baş, D.1    Boyaci, I.H.2
  • 5
    • 34347379500 scopus 로고    scopus 로고
    • Modeling and optimization II: Comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction
    • Baş, D., and İ. H. Boyaci{dotless}. 2007b. Modeling and optimization II: Comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction. J. Food Eng. 78:846-854.
    • (2007) J. Food Eng. , vol.78 , pp. 846-854
    • Baş, D.1    Boyaci, I.H.2
  • 6
    • 0034564603 scopus 로고    scopus 로고
    • Artificial neural networks: Fundamentals, computing, design, and application
    • Basheer, I., and M. Hajmeer. 2000. Artificial neural networks: Fundamentals, computing, design, and application. J. Microbiol. Methods 43:3-31.
    • (2000) J. Microbiol. Methods , vol.43 , pp. 3-31
    • Basheer, I.1    Hajmeer, M.2
  • 8
    • 0035871371 scopus 로고    scopus 로고
    • Artificial neural networks: Opening the black box
    • Dayhoff, J. E., and J. M. DeLeo. 2001. Artificial neural networks: Opening the black box. Cancer 91(Suppl. 8):1615-1635.
    • (2001) Cancer , vol.91 , Issue.SUPPL. 8 , pp. 1615-1635
    • Dayhoff, J.E.1    DeLeo, J.M.2
  • 9
    • 81555221209 scopus 로고    scopus 로고
    • Use of neural network models to estimate early egg production in broiler breeder hens through dietary nutrient intake
    • Faridi, A., and A. Golian. 2011. Use of neural network models to estimate early egg production in broiler breeder hens through dietary nutrient intake. Poult. Sci. 90:2897-2903.
    • (2011) Poult. Sci. , vol.90 , pp. 2897-2903
    • Faridi, A.1    Golian, A.2
  • 11
    • 0033623037 scopus 로고    scopus 로고
    • Application of neural networks and sensitivity analysis to improved prediction of trauma survival
    • Hunter, A., L. Kennedy, J. Henry, and I. Ferguson. 2000. Application of neural networks and sensitivity analysis to improved prediction of trauma survival. Comput. Methods Programs Biomed. 62:11-19.
    • (2000) Comput. Methods Programs Biomed. , vol.62 , pp. 11-19
    • Hunter, A.1    Kennedy, L.2    Henry, J.3    Ferguson, I.4
  • 12
    • 84855679266 scopus 로고    scopus 로고
    • Application of artificial neural networks for response surface modelling in HPLC method development
    • Korany, M. A., H. Mahgoub, O. T. Fahmy, and H. M. Maher. 2012. Application of artificial neural networks for response surface modelling in HPLC method development. J. Advert. Res. 3:53-63.
    • (2012) J. Advert. Res. , vol.3 , pp. 53-63
    • Korany, M.A.1    Mahgoub, H.2    Fahmy, O.T.3    Maher, H.M.4
  • 13
    • 84869778538 scopus 로고    scopus 로고
    • Development of artificial neural network models based on experimental data of response surface methodology to establish the nutritional requirements of digestible lysine, methionine, and threonine in broiler chicks
    • Mehri, M. 2012. Development of artificial neural network models based on experimental data of response surface methodology to establish the nutritional requirements of digestible lysine, methionine, and threonine in broiler chicks. Poult. Sci. 91:3280-3285. http://dx.doi.org/10.3382/ps.2012-02411.
    • (2012) Poult. Sci. , vol.91 , pp. 3280-3285
    • Mehri, M.1
  • 14
    • 0036754661 scopus 로고    scopus 로고
    • Egg physical characteristics and hatchability
    • Narushin, V. G., and M. N. Romanov. 2002. Egg physical characteristics and hatchability. World's Poult. Sci. J. 58:297-304.
    • (2002) World's Poult. Sci. J. , vol.58 , pp. 297-304
    • Narushin, V.G.1    Romanov, M.N.2
  • 16
    • 33646927522 scopus 로고    scopus 로고
    • Comparison of Gompertz and neural network models of broiler growth
    • Roush, W. B., W. A. Dozier III, and S. L. Branton. 2006. Comparison of Gompertz and neural network models of broiler growth. Poult. Sci. 85:794-797.
    • (2006) Poult. Sci. , vol.85 , pp. 794-797
    • Roush, W.B.1    Dozier III, W.A.2    Branton, S.L.3
  • 17
    • 79951760631 scopus 로고    scopus 로고
    • Comparison of logistic and neural network models to fit to the egg production curve of White Leghorn hens
    • Savegnago, R. P., B. N. Nunes, S. L. Caetano, A. S. Ferraudo, G. S. Schmidt, M. C. Ledur, and D. P. Munari. 2011. Comparison of logistic and neural network models to fit to the egg production curve of White Leghorn hens. Poult. Sci. 90:705-711.
    • (2011) Poult. Sci. , vol.90 , pp. 705-711
    • Savegnago, R.P.1    Nunes, B.N.2    Caetano, S.L.3    Ferraudo, A.S.4    Schmidt, G.S.5    Ledur, M.C.6    Munari, D.P.7
  • 18
    • 57749102090 scopus 로고    scopus 로고
    • StatSoft Version 8.0. StatSoft Inc., Tulsa, OK
    • StatSoft. 2008. Statistica Data Analysis Software System. Version 8.0. StatSoft Inc., Tulsa, OK.
    • (2008) Statistica Data Analysis Software System


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.