-
4
-
-
36249022993
-
-
San Diego, Calif, USA Academic Press Mathematics in Science and Engineering 1658022
-
Podlubny I., Fractional Differential Equations 1999 198 San Diego, Calif, USA Academic Press xxiv+340 Mathematics in Science and Engineering 1658022
-
(1999)
Fractional Differential Equations
, vol.198
-
-
Podlubny, I.1
-
5
-
-
0002795136
-
On the solution of nonlinear fractional order differential equations used in the modeling of viscoelasticity
-
Heidelberg, Germany Springer
-
Diethelm K., Freed A. D., Keil F., Mackens W., Voss H., Werther J., On the solution of nonlinear fractional order differential equations used in the modeling of viscoelasticity. Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties 1999 Heidelberg, Germany Springer 217 224
-
(1999)
Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties
, pp. 217-224
-
-
Diethelm, K.1
Freed, A.D.2
Keil, F.3
Mackens, W.4
Voss, H.5
Werther, J.6
-
6
-
-
0001044887
-
Relaxation in filled polymers: A fractional calculus approach
-
2-s2.0-0034548688
-
Metzler R., Schick W., Kilian H.-G., Nonnenmacher T. F., Relaxation in filled polymers: a fractional calculus approach. Journal of Chemical Physics 1995 103 16 7180 7186 2-s2.0-0034548688
-
(1995)
Journal of Chemical Physics
, vol.103
, Issue.16
, pp. 7180-7186
-
-
Metzler, R.1
Schick, W.2
Kilian, H.-G.3
Nonnenmacher, T.F.4
-
8
-
-
0028878140
-
A fractional calculus approach of self-similar protein dynamics
-
Glockle W. G., Nonnenmacher T. F., A fractional calculus approach of self-similar protein dynamics. Biophysical Journal 1995 68 46 53
-
(1995)
Biophysical Journal
, vol.68
, pp. 46-53
-
-
Glockle, W.G.1
Nonnenmacher, T.F.2
-
10
-
-
77949264980
-
A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions
-
10.1007/s10440-008-9356-6 2596185 ZBL1198.26004
-
Agarwal R. P., Benchohra M., Hamani S., A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Applicandae Mathematicae 2010 109 3 973 1033 10.1007/s10440-008-9356-6 2596185 ZBL1198.26004
-
(2010)
Acta Applicandae Mathematicae
, vol.109
, Issue.3
, pp. 973-1033
-
-
Agarwal, R.P.1
Benchohra, M.2
Hamani, S.3
-
11
-
-
25144460994
-
Positive solutions for boundary value problem of nonlinear fractional differential equation
-
DOI 10.1016/j.jmaa.2005.02.052, PII S0022247X05001733
-
Bai Z., Lü H., Positive solutions for boundary value problem of nonlinear fractional differential equation. Journal of Mathematical Analysis and Applications 2005 311 2 495 505 10.1016/j.jmaa.2005.02.052 2168413 ZBL1079.34048 (Pubitemid 41350217)
-
(2005)
Journal of Mathematical Analysis and Applications
, vol.311
, Issue.2
, pp. 495-505
-
-
Bai, Z.1
Lu, H.2
-
12
-
-
65049084831
-
-
Hackensack, NJ, USA World Scientific Series on Complexity, Nonlinearity and Chaos 10.1142/9789814355216 2894576
-
Baleanu D., Diethelm K., Scalas E., Trujillo J. J., Fractional Calculus 2012 3 Hackensack, NJ, USA World Scientific xxiv+400 Series on Complexity, Nonlinearity and Chaos 10.1142/9789814355216 2894576
-
(2012)
Fractional Calculus
, vol.3
-
-
Baleanu, D.1
Diethelm, K.2
Scalas, E.3
Trujillo, J.J.4
-
14
-
-
79955470495
-
Fractional complex transform for fractional differential equations
-
2777702 ZBL1215.35164
-
Li Z.-B., He J.-H., Fractional complex transform for fractional differential equations. Mathematical & Computational Applications 2010 15 5 970 973 2777702 ZBL1215.35164
-
(2010)
Mathematical & Computational Applications
, vol.15
, Issue.5
, pp. 970-973
-
-
Li, Z.-B.1
He, J.-H.2
-
15
-
-
0001983732
-
Fractional calculus: Some basic problems in continuum and statistical mechanics
-
Vienna, Austria Springer CISM Courses and Lectures 1611587 ZBL0917.73004
-
Mainardi F., Fractional calculus: some basic problems in continuum and statistical mechanics. Fractals and Fractional Calculus in Continuum Mechanics 1997 378 Vienna, Austria Springer 291 348 CISM Courses and Lectures 1611587 ZBL0917.73004
-
(1997)
Fractals and Fractional Calculus in Continuum Mechanics
, vol.378
, pp. 291-348
-
-
Mainardi, F.1
-
16
-
-
33750489744
-
A comparison study between the modified decomposition method and the traditional methods for solving nonlinear integral equations
-
DOI 10.1016/j.amc.2006.03.023, PII S0096300306003018
-
Wazwaz A.-M., A comparison study between the modified decomposition method and the traditional methods for solving nonlinear integral equations. Applied Mathematics and Computation 2006 181 2 1703 1712 10.1016/j.amc.2006.03. 023 2273059 ZBL1105.65128 (Pubitemid 44646640)
-
(2006)
Applied Mathematics and Computation
, vol.181
, Issue.2
, pp. 1703-1712
-
-
Wazwaz, A.-M.1
-
17
-
-
0000092673
-
Variational iteration method - A kind of non-linear analytical technique: Some examples
-
PII S0020746298000481
-
He J.-H., Variational iteration method-a kind of non-linear analytical technique: some examples. International Journal of Non-Linear Mechanics 1999 34 4 699 708 2-s2.0-16844373404 (Pubitemid 129537033)
-
(1999)
International Journal of Non-Linear Mechanics
, vol.34
, Issue.4
, pp. 699-708
-
-
He, J.-H.1
-
18
-
-
0037440579
-
Homotopy perturbation method: A new nonlinear analytical technique
-
10.1016/S0096-3003(01)00312-5 1934316 ZBL1030.34013
-
He J.-H., Homotopy perturbation method: a new nonlinear analytical technique. Applied Mathematics and Computation 2003 135 1 73 79 10.1016/S0096-3003(01)00312-5 1934316 ZBL1030.34013
-
(2003)
Applied Mathematics and Computation
, vol.135
, Issue.1
, pp. 73-79
-
-
He, J.-H.1
-
19
-
-
0032672778
-
Homotopy perturbation technique
-
10.1016/S0045-7825(99)00018-3 1711041 ZBL0956.70017
-
He J.-H., Homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering 1999 178 3-4 257 262 10.1016/S0045-7825(99)00018-3 1711041 ZBL0956.70017
-
(1999)
Computer Methods in Applied Mechanics and Engineering
, vol.178
, Issue.3-4
, pp. 257-262
-
-
He, J.-H.1
-
20
-
-
0033702384
-
A coupling method of a homotopy technique and a perturbation technique for non-linear problems
-
10.1016/S0020-7462(98)00085-7 1723761
-
He J.-H., A coupling method of a homotopy technique and a perturbation technique for non-linear problems. International Journal of Non-Linear Mechanics 2000 35 1 37 43 10.1016/S0020-7462(98)00085-7 1723761
-
(2000)
International Journal of Non-Linear Mechanics
, vol.35
, Issue.1
, pp. 37-43
-
-
He, J.-H.1
-
22
-
-
0032307661
-
Approximate analytical solution for seepage flow with fractional derivatives in porous media
-
10.1016/S0045-7825(98)00108-X 1665221 ZBL0942.76077
-
He J.-H., Approximate analytical solution for seepage flow with fractional derivatives in porous media. Computer Methods in Applied Mechanics and Engineering 1998 167 1-2 57 68 10.1016/S0045-7825(98)00108-X 1665221 ZBL0942.76077
-
(1998)
Computer Methods in Applied Mechanics and Engineering
, vol.167
, Issue.1-2
, pp. 57-68
-
-
He, J.-H.1
-
23
-
-
84860388823
-
A short remark on fractional variational iteration method
-
10.1016/j.physleta.2011.07.033 2826245
-
He J.-H., A short remark on fractional variational iteration method. Physics Letters A 2011 375 38 3362 3364 10.1016/j.physleta.2011.07.033 2826245
-
(2011)
Physics Letters A
, vol.375
, Issue.38
, pp. 3362-3364
-
-
He, J.-H.1
-
24
-
-
84858226842
-
Homotopy perturbation method with an auxiliary term
-
857612 10.1155/2012/857612 2879936 ZBL1235.65096
-
He J.-H., Homotopy perturbation method with an auxiliary term. Abstract and Applied Analysis 2012 2012 7 857612 10.1155/2012/857612 2879936 ZBL1235.65096
-
(2012)
Abstract and Applied Analysis
, vol.2012
, pp. 7
-
-
He, J.-H.1
-
25
-
-
77955858024
-
A Note on the homotopy perturbation method
-
2-s2.0-77955858024
-
Ji-Huan H. E., A Note on the homotopy perturbation method. Thermal Science 2010 14 2 565 568 2-s2.0-77955858024
-
(2010)
Thermal Science
, vol.14
, Issue.2
, pp. 565-568
-
-
Ji-Huan, H.E.1
-
26
-
-
84855203771
-
Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus
-
10.1016/j.physleta.2011.11.030 2877722
-
He J.-H., Elagan S. K., Li Z. B., Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Physics Letters A 2012 376 4 257 259 10.1016/j.physleta.2011.11.030 2877722
-
(2012)
Physics Letters A
, vol.376
, Issue.4
, pp. 257-259
-
-
He, J.-H.1
Elagan, S.K.2
Li, Z.B.3
-
27
-
-
34250647432
-
An approximation solution of a nonlinear equation with Riemann-Liouville's fractional derivatives by He's variational iteration method
-
DOI 10.1016/j.cam.2006.07.011, PII S0377042706004602, Variational Iteration Method-Reality, Potential, and Challenges
-
Abbasbandy S., An approximation solution of a nonlinear equation with Riemann-Liouville's fractional derivatives by He's variational iteration method. Journal of Computational and Applied Mathematics 2007 207 1 53 58 10.1016/j.cam.2006.07.011 2332946 ZBL1120.65133 (Pubitemid 46935385)
-
(2007)
Journal of Computational and Applied Mathematics
, vol.207
, Issue.1
, pp. 53-58
-
-
Abbasbandy, S.1
-
28
-
-
41949112904
-
Application of homotopy-perturbation method to fractional IVPs
-
DOI 10.1016/j.cam.2007.06.010, PII S0377042707003081
-
Abdulaziz O., Hashim I., Momani S., Application of homotopy-perturbation method to fractional IVPs. Journal of Computational and Applied Mathematics 2008 216 2 574 584 10.1016/j.cam.2007.06.010 2412931 ZBL1142.65104 (Pubitemid 351509724)
-
(2008)
Journal of Computational and Applied Mathematics
, vol.216
, Issue.2
, pp. 574-584
-
-
Abdulaziz, O.1
Hashim, I.2
Momani, S.3
-
30
-
-
0010173982
-
-
Berlin, Germany Springer Lecture Notes in Mathematics 0367127
-
Ross B., Fractional Calculus and Its Applications 1975 457 Berlin, Germany Springer vi+381 Lecture Notes in Mathematics 0367127
-
(1975)
Fractional Calculus and Its Applications
, vol.457
-
-
Ross, B.1
-
31
-
-
34247374485
-
The matrix Laguerre transform
-
10.1016/0096-3003(84)90050-X 747504 ZBL0553.44002
-
Sumita U., The matrix Laguerre transform. Applied Mathematics and Computation 1984 15 1 1 28 10.1016/0096-3003(84)90050-X 747504 ZBL0553.44002
-
(1984)
Applied Mathematics and Computation
, vol.15
, Issue.1
, pp. 1-28
-
-
Sumita, U.1
-
32
-
-
34247336205
-
Kronecker operational matrices for fractional calculus and some applications
-
DOI 10.1016/j.amc.2006.08.122, PII S0096300306011593
-
Kilicman A., Al Zhour Z. A. A., Kronecker operational matrices for fractional calculus and some applications. Applied Mathematics and Computation 2007 187 1 250 265 10.1016/j.amc.2006.08.122 2323577 ZBL1123.65063 (Pubitemid 46635724)
-
(2007)
Applied Mathematics and Computation
, vol.187
, Issue.1 SPEC. ISS.
, pp. 250-265
-
-
Kilicman, A.1
Al Zhour, Z.A.A.2
-
33
-
-
0000615571
-
An approximate solution technique not depending on small parameters: A special example
-
10.1016/0020-7462(94)00054-E 1336915 ZBL0837.76073
-
Liao S. J., An approximate solution technique not depending on small parameters: a special example. International Journal of Non-Linear Mechanics 1995 30 3 371 380 10.1016/0020-7462(94)00054-E 1336915 ZBL0837.76073
-
(1995)
International Journal of Non-Linear Mechanics
, vol.30
, Issue.3
, pp. 371-380
-
-
Liao, S.J.1
-
34
-
-
0031223353
-
Boundary element method for general nonlinear differential operators
-
PII S095579979700043X
-
Liao S.-J., Boundary element method for general nonlinear differential operators. Engineering Analysis with Boundary Elements 1997 20 2 91 99 2-s2.0-0031223353 (Pubitemid 127412967)
-
(1997)
Engineering Analysis with Boundary Elements
, vol.20
, Issue.2
, pp. 91-99
-
-
Liao, S.-J.1
-
35
-
-
55649112486
-
Solution of BVPs for fourth-order integro-differential equations by using homotopy perturbation method
-
10.1016/j.camwa.2008.07.020 2474572 ZBL1165.65377
-
Yildirim A., Solution of BVPs for fourth-order integro-differential equations by using homotopy perturbation method. Computers & Mathematics with Applications 2008 56 12 3175 3180 10.1016/j.camwa.2008.07.020 2474572 ZBL1165.65377
-
(2008)
Computers & Mathematics with Applications
, vol.56
, Issue.12
, pp. 3175-3180
-
-
Yildirim, A.1
-
36
-
-
84861715300
-
Solutions of the fractional Davey-Stewartson Equations with variational iteration method
-
Jafari H., Kadem A., Baleanu D., Yilmaz T., Solutions of the fractional Davey-Stewartson Equations with variational iteration method. Romanian Reports in Physics 2012 64 2 337 346
-
(2012)
Romanian Reports in Physics
, vol.64
, Issue.2
, pp. 337-346
-
-
Jafari, H.1
Kadem, A.2
Baleanu, D.3
Yilmaz, T.4
-
37
-
-
84862302121
-
The approximate solution of fractional Fredholm integrodifferential equations by variational iteration and homotopy perturbation methods
-
486193 10.1155/2012/486193
-
Kadem A., Kiliçman A., The approximate solution of fractional Fredholm integrodifferential equations by variational iteration and homotopy perturbation methods. Abstract and Applied Analysis 2012 2012 10 486193 10.1155/2012/486193
-
(2012)
Abstract and Applied Analysis
, vol.2012
, pp. 10
-
-
Kadem, A.1
Kiliçman, A.2
-
38
-
-
79953748504
-
Variational iteration method and homotopy perturbation method for fourth-order fractional integro-differential equations
-
10.1016/j.camwa.2010.10.004 2785610 ZBL1219.65081
-
Nawaz Y., Variational iteration method and homotopy perturbation method for fourth-order fractional integro-differential equations. Computers & Mathematics with Applications 2011 61 8 2330 2341 10.1016/j.camwa.2010.10.004 2785610 ZBL1219.65081
-
(2011)
Computers & Mathematics with Applications
, vol.61
, Issue.8
, pp. 2330-2341
-
-
Nawaz, Y.1
-
39
-
-
70350564868
-
The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics
-
10.1016/j.camwa.2009.03.009 2557350 ZBL1189.65254
-
Odibat Z., Momani S., The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics. Computers & Mathematics with Applications 2009 58 11-12 2199 2208 10.1016/j.camwa.2009.03.009 2557350 ZBL1189.65254
-
(2009)
Computers & Mathematics with Applications
, vol.58
, Issue.11-12
, pp. 2199-2208
-
-
Odibat, Z.1
Momani, S.2
-
40
-
-
34748865371
-
Fourth order integro-differential equations using variational iteration method
-
DOI 10.1016/j.camwa.2006.12.055, PII S0898122107002842, Variational Iteration Method for Nonlinear Problems
-
Sweilam N. H., Fourth order integro-differential equations using variational iteration method. Computers & Mathematics with Applications 2007 54 7-8 1086 1091 10.1016/j.camwa.2006.12.055 2398130 ZBL1141.65399 (Pubitemid 47488826)
-
(2007)
Computers and Mathematics with Applications
, vol.54
, Issue.7-8
, pp. 1086-1091
-
-
Sweilam, N.H.1
|