-
1
-
-
74549188261
-
Discovering data quality rules
-
Chiang, F. and Miller, R.J. (2008) Discovering Data Quality Rules. Proc. VLDB Endowment, 1, 1166-1177.
-
(2008)
Proc. VLDB Endowment
, vol.1
, pp. 1166-1177
-
-
Chiang, F.1
Miller, R.J.2
-
2
-
-
46649106686
-
Conditional functional dependencies for capturing data inconsistencies. acm
-
Fan,W., Geerts, F., Jia, X. and Kementsietsidis, A. (2008) Conditional functional dependencies for capturing data inconsistencies. ACM Trans. Database Syst., 33, 1-48.
-
(2008)
Trans. Database Syst.
, vol.33
, pp. 1-48
-
-
Fan, W.1
Geerts, F.2
Jia, X.3
Kementsietsidis, A.4
-
3
-
-
57549084481
-
Dependencies revisited for improving data quality
-
Vancouver, Canada, June 9-11, ACM, NewYork.
-
Fan,W. (2008) Dependencies Revisited for Improving Data Quality. Proc. ACM SIGMOD-SIGACT-SIGART Symp. Principles of Database Systems (PODS), Vancouver, Canada, June 9-11, pp. 159-170. ACM, NewYork.
-
(2008)
Proc. ACM SIGMOD-SIGACT-SIGART Symp. Principles of Database Systems (PODS)
, pp. 159-170
-
-
Fan, W.1
-
4
-
-
70349846180
-
On generating near-optimal tableaux for conditional functional dependencies
-
Golab, L., Karloff, H., Korn, F., Srivastava, D. andYu, B. (2008) On generating near-optimal tableaux for conditional functional dependencies. Proc. VLDB Endowment, 1, 376-390.
-
(2008)
Proc. VLDB Endowment
, vol.1
, pp. 376-390
-
-
Golab, L.1
Karloff, H.2
Korn, F.3
Srivastava, D.4
Yu, B.5
-
5
-
-
79953230060
-
Discovering conditional functional dependencies
-
Fan, W., Geerts, F., Li, J. and Xiong, M. (2011) Discovering conditional functional dependencies. IEEE Trans. Knowl. Data Eng., 23, 683-698.
-
(2011)
IEEE Trans. Knowl. Data Eng.
, vol.23
, pp. 683-698
-
-
Fan, W.1
Geerts, F.2
Li, J.3
Xiong, M.4
-
6
-
-
0001371923
-
Fast discovery of association rules
-
Fayyad, U. M. and Piatetsky-Shapiro, G. and Smyth, P. and Uthurusamy, R. (eds),AAAI Press, Menlo Park, CA, USA
-
Agrawal, R., Mannila, H., Srikant, R., Toivonen, H andVerkamo, A. I. (1996) Fast Discovery of Association Rules. In Fayyad, U. M. and Piatetsky-Shapiro, G. and Smyth, P. and Uthurusamy, R. (eds) Advances in Knowledge Discovery and Data Mining,AAAI Press, Menlo Park, CA, USA
-
(1996)
Advances in Knowledge Discovery and Data Mining
-
-
Agrawal, R.1
Mannila, H.2
Srikant, R.3
Toivonen, H.4
Verkamo, A.I.5
-
7
-
-
33244461081
-
Relative risk and odds ratio: A data mining perspective
-
Proceedings of the Twenty-Fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2005
-
Li, H., Li, J., Wong, L., Feng, M. and Tan,Y.-P. (2005) Relative Risk and Odds Ratio: a Data Mining Perspective. Proc. ACM SIGMOD-SIGACT-SIGART Symp. on Principles of Database Systems (PODS), Baltimore, MD, USA, June 13-15, pp. 368- 377. ACM, NewYork, USA (Pubitemid 43275499)
-
(2005)
Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
, pp. 368-377
-
-
Li, H.1
Li, J.2
Wong, L.3
Feng, M.4
Tan, Y.-P.5
-
8
-
-
77957355417
-
Redundancy, deduction schemes, and minimum-size bases for association rules
-
Balcázar, J.L. (2010) Redundancy, deduction schemes, and minimum-size bases for association rules. Logical Methods Comput. Sci., 6(2), 1-33.
-
(2010)
Logical Methods Comput. Sci.
, vol.6
, Issue.2
, pp. 1-33
-
-
Balcázar, J.L.1
-
9
-
-
4444337294
-
Mining non-redundant association rules
-
DOI 10.1023/B:DAMI.0000040429.96086.c7
-
Zaki, M.J. (2004) Mining non-redundant association rules. Data Mining Knowl. Discov. J., 9, 223-248. (Pubitemid 39193158)
-
(2004)
Data Mining and Knowledge Discovery
, vol.9
, Issue.3
, pp. 223-248
-
-
Zaki, M.J.1
-
10
-
-
0027621699
-
Mining association rules between sets of items in large databases
-
Washington, DC, USA, May 26-28, ACM, NewYork, USA
-
Agrawal, R., Imieli'nski, T. and Swami, A. (1993) Mining Association Rules between Sets of Items in Large Databases. Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD), Washington, DC, USA, May 26-28, pp. 207-216. ACM, NewYork, USA
-
(1993)
Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD)
, pp. 207-216
-
-
Agrawal, R.1
Imieli'Nski, T.2
Swami, A.3
-
11
-
-
17444386019
-
Generating a condensed representation for association rules
-
DOI 10.1007/s10844-005-0266-z
-
Pasquier, N., Taouil, R., Bastide, Y., Stumme, G. and Lakhal, L. (2005) Generating a condensed representation for association rules. J. Intell. Inf. Syst., 24, 29-60. (Pubitemid 40536188)
-
(2005)
Journal of Intelligent Information Systems
, vol.24
, Issue.1
, pp. 29-60
-
-
Pasquier, N.1
Taouil, R.2
Bastide, Y.3
Stumme, G.4
Lakhal, L.5
-
12
-
-
0002625450
-
Closet:an efficient algorithm for mining frequent closed itemsets
-
Dallas, TX, USA, May 14, ACM, NewYork, USA
-
Pei, J., Han, J. and Mao, R. (2000) Closet:An Efficient Algorithm for Mining Frequent Closed Itemsets. Proc. ACM SIGMOD Int. Workshop on Data Mining and Knowledge Discovery (DMKD), Dallas, TX, USA, May 14, pp. 21-30. ACM, NewYork, USA
-
(2000)
Proc. ACM SIGMOD Int. Workshop on Data Mining and Knowledge Discovery (DMKD)
, pp. 21-30
-
-
Pei, J.1
Han, J.2
Mao, R.3
-
13
-
-
77952363125
-
Closet+: Searching for the best strategies for mining frequent closed itemsets
-
Washington, DC, USA, August 24-27, ACM, NewYork.
-
Wang, J., Han, J. and Pei, J. (2003) Closet+: Searching for the Best Strategies for Mining Frequent Closed Itemsets. In ACMSIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD), Washington, DC, USA, August 24-27, pp. 236-245. ACM, NewYork.
-
(2003)
ACMSIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD)
, pp. 236-245
-
-
Wang, J.1
Han, J.2
Pei, J.3
-
14
-
-
0033096890
-
Efficient mining of association rules using closed itemset lattices
-
Pasquier, N., Bastide, Y., Taouil, R. and Lakhal, L. (1999) Efficient mining of association rules using closed itemset lattices. J. Inf. Syst., 24, 25-46.
-
(1999)
J. Inf. Syst.
, vol.24
, pp. 25-46
-
-
Pasquier, N.1
Bastide, Y.2
Taouil, R.3
Lakhal, L.4
-
15
-
-
84911977993
-
Discovering frequent closed itemsets for association rules
-
Jerusalem, Israel, January 10-12, Springer, London, UK
-
Pasquier, N., Bastide, Y., Taouil, R. and Lakhal, L. (1999) Discovering Frequent Closed Itemsets for Association rules. Proc. Int. Conf. on Database Theory (ICDT), Jerusalem, Israel, January 10-12, pp. 398-416. Springer, London, UK
-
(1999)
Proc. Int. Conf. on Database Theory (ICDT)
, pp. 398-416
-
-
Pasquier, N.1
Bastide, Y.2
Taouil, R.3
Lakhal, L.4
-
16
-
-
34547973316
-
Frequent closed itemset based algorithms: A thorough structural and analytical survey
-
Yahia, S.B., Hamrouni, T. and Nguifo, E.M. (2006) Frequent closed itemset based algorithms: a thorough structural and analytical survey. SIGKDD Exploration Newsletter, 8, 93-104.
-
(2006)
SIGKDD Exploration Newsletter
, vol.8
, pp. 93-104
-
-
Yahia, S.B.1
Hamrouni, T.2
Nguifo, E.M.3
-
18
-
-
67650659748
-
On optimal rule mining: A framework and a necessary and sufficient condition of antimonotonicity
-
Bangkok, Thailand, April 27-30, Springer, Berlin, Germany.
-
Le Bras, Y., Lenca, P. and Lallich, S. (2009) On Optimal Rule Mining:A Framework and a Necessary and Sufficient Condition of Antimonotonicity. Proc. Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD), Bangkok, Thailand, April 27-30, pp. 705-712. Springer, Berlin, Germany.
-
(2009)
Proc. Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD)
, pp. 705-712
-
-
Le Bras, Y.1
Lenca, P.2
Lallich, S.3
-
19
-
-
2442449952
-
Mining frequent patterns without candidate generation: A frequent-pattern tree approach
-
DOI 10.1023/B:DAMI.0000005258.31418.83
-
Han, J., Pei, J., Yin, Y. and Mao, R. (2004) Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Min. Knowl. Discov. J., 8, 53-87. (Pubitemid 39019971)
-
(2004)
Data Mining and Knowledge Discovery
, vol.8
, Issue.1
, pp. 53-87
-
-
Han, J.1
Pei, J.2
Yin, Y.3
Mao, R.4
-
20
-
-
85040378256
-
Discovering predictive association rules
-
New York, NY, USA, August 27-31, AAAI Press, Menlo Park, CA, USA
-
Megiddo, N. and Srikant, R. (1998) Discovering Predictive Association Rules. Proc. Int. Conf. on Knowledge Discovery and Data Mining (KDD), New York, NY, USA, August 27-31, pp. 274-278. AAAI Press, Menlo Park, CA, USA
-
(1998)
Proc. Int. Conf. on Knowledge Discovery and Data Mining (KDD)
, pp. 274-278
-
-
Megiddo, N.1
Srikant, R.2
-
22
-
-
78649934709
-
-
University of California, Irvine, School of Information and Computer Sciences.
-
Frank, A. and Asuncion, A. (2010) UCI machine learning repository. University of California, Irvine, School of Information and Computer Sciences. http://archive.ics.uci.edu/ml.
-
(2010)
UCI Machine Learning Repository
-
-
Frank, A.1
Asuncion, A.2
-
23
-
-
70350624404
-
Conditional dependencies: A principled approach to improving data quality
-
Birmingham, UK, July 7-9, Springer, Berlin, Germany
-
Fan,W., Geerts, F. and Jia, X. (2009) Conditional Dependencies: A Principled Approach to Improving Data Quality. British National Conf. on Databases (BNCOD), Birmingham, UK, July 7-9, pp. 8-20. Springer, Berlin, Germany.
-
(2009)
British National Conf. on Databases (BNCOD)
, pp. 8-20
-
-
Fan, W.1
Geerts, F.2
Jia, X.3
|