메뉴 건너뛰기




Volumn 90, Issue 3, 2013, Pages 347-383

Multiclass classification with bandit feedback using adaptive regularization

Author keywords

Online learning; Regret; Upper confidence bound

Indexed keywords

ADAPTIVE REGULARIZATION; BANDIT FEEDBACKS; EXPLORATION AND EXPLOITATION; MULTI-CLASS; MULTI-CLASS CLASSIFICATION; ON-LINE ALGORITHMS; ONLINE LEARNING; PARTIAL FEEDBACK; PERCEPTRON; PROBABILISTIC MODELS; RANDOM SAMPLING; REAL-WORLD; REGRET; SECOND ORDERS; SINGLE-BIT; TEXT CLASSIFICATION; UPPER CONFIDENCE BOUND; VOWEL RECOGNITION;

EID: 84874710652     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-012-5321-8     Document Type: Article
Times cited : (59)

References (31)
  • 1
    • 0041966002 scopus 로고    scopus 로고
    • Using confidence bounds for exploitation-exploration trade-offs
    • 1984023 1084.68543
    • Auer, P. (2003). Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine Learning Research, 3, 397-422.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 397-422
    • Auer, P.1
  • 2
    • 0035370926 scopus 로고    scopus 로고
    • Relative loss bounds for online density estimation with the exponential family of distributions
    • 0988.68173 10.1023/A:1010896012157
    • Azoury, K. S., & Warmuth, M. K. (2001). Relative loss bounds for online density estimation with the exponential family of distributions. Machine Learning, 43, 211-246.
    • (2001) Machine Learning , vol.43 , pp. 211-246
    • Azoury, K.S.1    Warmuth, M.K.2
  • 6
    • 0036568032 scopus 로고    scopus 로고
    • On the learnability and design of output codes for multiclass problems
    • 1012.68155 10.1023/A:1013637720281
    • Crammer, K., & Singer, Y. (2002). On the learnability and design of output codes for multiclass problems. Machine Learning, 47, 201-233.
    • (2002) Machine Learning , vol.47 , pp. 201-233
    • Crammer, K.1    Singer, Y.2
  • 7
    • 0141496132 scopus 로고    scopus 로고
    • Ultraconservative online algorithms for multiclass problems
    • 1983939 1112.68497
    • Crammer, K., & Singer, Y. (2003). Ultraconservative online algorithms for multiclass problems. Journal of Machine Learning Research, 3, 951-991.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 951-991
    • Crammer, K.1    Singer, Y.2
  • 8
    • 79953651835 scopus 로고    scopus 로고
    • Multi-class confidence weighted algorithms
    • Crammer, K., Dredze, M., & Kulesza, A. (2009a). Multi-class confidence weighted algorithms. In EMNLP 2009.
    • (2009) EMNLP 2009
    • Crammer, K.1    Dredze, M.2    Kulesza, A.3
  • 9
    • 84874117035 scopus 로고    scopus 로고
    • Adaptive regularization of weighted vectors
    • Crammer, K., Kulesza, A., & Dredze, M. (2009b). Adaptive regularization of weighted vectors. In Nips 2009.
    • (2009) Nips 2009
    • Crammer, K.1    Kulesza, A.2    Dredze, M.3
  • 10
    • 84898072179 scopus 로고    scopus 로고
    • Stochastic linear optimization under bandit feedback
    • Dani, V., Hayes, T., & Kakade, S. (2008). Stochastic linear optimization under bandit feedback. In Colt 2008.
    • (2008) Colt 2008
    • Dani, V.1    Hayes, T.2    Kakade, S.3
  • 11
    • 84875634609 scopus 로고    scopus 로고
    • Robust selective sampling from single and multiple teachers
    • Dekel, O., Gentile, C., & Sridharan, K. (2010). Robust selective sampling from single and multiple teachers. In Colt 2010.
    • (2010) Colt 2010
    • Dekel, O.1    Gentile, C.2    Sridharan, K.3
  • 12
    • 56449101965 scopus 로고    scopus 로고
    • Confidence-weighted linear classification
    • Dredze, M., Crammer, K., & Pereira, F. (2008). Confidence-weighted linear classification. In ICML 2008.
    • (2008) ICML 2008
    • Dredze, M.1    Crammer, K.2    Pereira, F.3
  • 14
    • 85162453290 scopus 로고    scopus 로고
    • Newtron: An efficient bandit algorithm for online multiclass prediction
    • Hazan, E., & Kale, S. (2011). Newtron: an efficient bandit algorithm for online multiclass prediction. In NIPS 2011.
    • (2011) NIPS 2011
    • Hazan, E.1    Kale, S.2
  • 15
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • 0202.17205 10.1080/00401706.1970.10488634
    • Hoerl, A., & Kennard, R. (1970). Ridge regression: biased estimation for nonorthogonal problems. Technometrics, 12, 55-67.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.1    Kennard, R.2
  • 16
    • 84874692021 scopus 로고    scopus 로고
    • On the generalization ability of online strongly convex programming algorithm
    • Kakade, S., & Tewari, A. (2008). On the generalization ability of online strongly convex programming algorithm. In Nips 2008.
    • (2008) Nips 2008
    • Kakade, S.1    Tewari, A.2
  • 17
    • 56449104477 scopus 로고    scopus 로고
    • Efficient bandit algorithms for online multiclass prediction
    • Kakade, S., Shalev-Shwartz, S., & Tewari, A. (2008). Efficient bandit algorithms for online multiclass prediction. In ICML 2008.
    • (2008) ICML 2008
    • Kakade, S.1    Shalev-Shwartz, S.2    Tewari, A.3
  • 18
    • 44949085753 scopus 로고    scopus 로고
    • The Vocal Joystick data collection effort and vowel corpus
    • Pittsburgh, PA
    • Kilanski, K., Malkin, J., Li, X., Wright, R., & Bilmes, J. (2006). The Vocal Joystick data collection effort and vowel corpus. In Interspeech, Pittsburgh, PA.
    • (2006) Interspeech
    • Kilanski, K.1    Malkin, J.2    Li, X.3    Wright, R.4    Bilmes, J.5
  • 19
    • 77956144722 scopus 로고    scopus 로고
    • The epoch-greedy algorithm for contextual multi-armed bandits
    • Langford, J., & Zhang, T. (2007). The epoch-greedy algorithm for contextual multi-armed bandits. In Nips 2007.
    • (2007) Nips 2007
    • Langford, J.1    Zhang, T.2
  • 21
    • 70450205580 scopus 로고    scopus 로고
    • How to loose confidence: Probabilistic linear machines for multiclass classification
    • Lin, H., Bilmes, J., & Crammer, K. (2009). How to loose confidence: probabilistic linear machines for multiclass classification. In INTERSPEECH (pp. 2559-2562).
    • (2009) INTERSPEECH , pp. 2559-2562
    • Lin, H.1    Bilmes, J.2    Crammer, K.3
  • 22
    • 77953179734 scopus 로고    scopus 로고
    • Efficient Euclidean projections in linear time
    • Liu, J., & Ye, J. (2009). Efficient Euclidean projections in linear time. In ICML 2009 (p. 83).
    • (2009) ICML 2009 , pp. 83
    • Liu, J.1    Ye, J.2
  • 23
    • 84898452145 scopus 로고    scopus 로고
    • Showing relevant ads via Lipschitz context multi-armed bandits
    • Lu, T., Pal, D., & Pal, M. (2010). Showing relevant ads via Lipschitz context multi-armed bandits. In Aistat 2010.
    • (2010) Aistat 2010
    • Lu, T.1    Pal, D.2    Pal, M.3
  • 24
    • 80053440857 scopus 로고    scopus 로고
    • Nonparametric bandits with covariates
    • Rigollet, P., & Zeevi, A. (2010). Nonparametric bandits with covariates. In Colt 2010.
    • (2010) Colt 2010
    • Rigollet, P.1    Zeevi, A.2
  • 25
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • 1529895 10.1037/h0042519
    • Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65, 386-407.
    • (1958) Psychological Review , vol.65 , pp. 386-407
    • Rosenblatt, F.1
  • 27
    • 85162058047 scopus 로고    scopus 로고
    • Online linear regression and its application to model-based reinforcement learning
    • Strehl, A., & Littman, M. (2008). Online linear regression and its application to model-based reinforcement learning. In NIPS 2008.
    • (2008) NIPS 2008
    • Strehl, A.1    Littman, M.2
  • 28
    • 80052674910 scopus 로고    scopus 로고
    • Learning to trade off between exploration and exploitation in multiclass bandit prediction
    • Valizadegan, H., Jin, R., & Wang, S. (2011). Learning to trade off between exploration and exploitation in multiclass bandit prediction. In KDD 2011.
    • (2011) KDD 2011
    • Valizadegan, H.1    Jin, R.2    Wang, S.3
  • 31
    • 80052680363 scopus 로고    scopus 로고
    • A potential-based framework for online multi-class learning with partial feedback
    • Wang, S., Jin, R., & Valizadegan, H. (2010). A potential-based framework for online multi-class learning with partial feedback. In Aistat 2010.
    • (2010) Aistat 2010
    • Wang, S.1    Jin, R.2    Valizadegan, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.